Metamath Proof Explorer


Theorem mapdm0

Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020) (Proof shortened by Thierry Arnoux, 3-Dec-2021)

Ref Expression
Assertion mapdm0 BVB=

Proof

Step Hyp Ref Expression
1 0ex V
2 elmapg BVVfBf:B
3 1 2 mpan2 BVfBf:B
4 f0bi f:Bf=
5 3 4 bitrdi BVfBf=
6 velsn ff=
7 5 6 bitr4di BVfBf
8 7 eqrdv BVB=