Metamath Proof Explorer


Theorem matbas2i

Description: A matrix is a function. (Contributed by Stefan O'Rear, 11-Sep-2015)

Ref Expression
Hypotheses matbas2.a A=NMatR
matbas2.k K=BaseR
matbas2i.b B=BaseA
Assertion matbas2i MBMKN×N

Proof

Step Hyp Ref Expression
1 matbas2.a A=NMatR
2 matbas2.k K=BaseR
3 matbas2i.b B=BaseA
4 id MBMB
5 4 3 eleqtrdi MBMBaseA
6 1 3 matrcl MBNFinRV
7 1 2 matbas2 NFinRVKN×N=BaseA
8 6 7 syl MBKN×N=BaseA
9 5 8 eleqtrrd MBMKN×N