Metamath Proof Explorer


Theorem matscaOLD

Description: Obsolete proof of matsca as of 12-Nov-2024. The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses matbas.a A=NMatR
matbas.g G=RfreeLModN×N
Assertion matscaOLD NFinRVScalarG=ScalarA

Proof

Step Hyp Ref Expression
1 matbas.a A=NMatR
2 matbas.g G=RfreeLModN×N
3 scaid Scalar=SlotScalarndx
4 3re 3
5 3lt5 3<5
6 4 5 gtneii 53
7 scandx Scalarndx=5
8 mulrndx ndx=3
9 7 8 neeq12i Scalarndxndx53
10 6 9 mpbir Scalarndxndx
11 3 10 setsnid ScalarG=ScalarGsSetndxRmaMulNNN
12 eqid RmaMulNNN=RmaMulNNN
13 1 2 12 matval NFinRVA=GsSetndxRmaMulNNN
14 13 fveq2d NFinRVScalarA=ScalarGsSetndxRmaMulNNN
15 11 14 eqtr4id NFinRVScalarG=ScalarA