Metamath Proof Explorer


Theorem mdandyvr7

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr7.1 φζ
mdandyvr7.2 ψσ
mdandyvr7.3 χψ
mdandyvr7.4 θψ
mdandyvr7.5 τψ
mdandyvr7.6 ηφ
Assertion mdandyvr7 χσθστσηζ

Proof

Step Hyp Ref Expression
1 mdandyvr7.1 φζ
2 mdandyvr7.2 ψσ
3 mdandyvr7.3 χψ
4 mdandyvr7.4 θψ
5 mdandyvr7.5 τψ
6 mdandyvr7.6 ηφ
7 3 2 bitri χσ
8 4 2 bitri θσ
9 7 8 pm3.2i χσθσ
10 5 2 bitri τσ
11 9 10 pm3.2i χσθστσ
12 6 1 bitri ηζ
13 11 12 pm3.2i χσθστσηζ