Metamath Proof Explorer


Theorem mdandyvrx15

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx15.1 φζ
mdandyvrx15.2 ψσ
mdandyvrx15.3 χψ
mdandyvrx15.4 θψ
mdandyvrx15.5 τψ
mdandyvrx15.6 ηψ
Assertion mdandyvrx15 χσθστσησ

Proof

Step Hyp Ref Expression
1 mdandyvrx15.1 φζ
2 mdandyvrx15.2 ψσ
3 mdandyvrx15.3 χψ
4 mdandyvrx15.4 θψ
5 mdandyvrx15.5 τψ
6 mdandyvrx15.6 ηψ
7 2 1 3 4 5 6 mdandyvrx0 χσθστσησ