Metamath Proof Explorer


Theorem mdetleib

Description: Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in Lang p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015) (Revised by SO, 9-Jul-2018)

Ref Expression
Hypotheses mdetfval.d D=NmaDetR
mdetfval.a A=NMatR
mdetfval.b B=BaseA
mdetfval.p P=BaseSymGrpN
mdetfval.y Y=ℤRHomR
mdetfval.s S=pmSgnN
mdetfval.t ·˙=R
mdetfval.u U=mulGrpR
Assertion mdetleib MBDM=RpPYSp·˙UxNpxMx

Proof

Step Hyp Ref Expression
1 mdetfval.d D=NmaDetR
2 mdetfval.a A=NMatR
3 mdetfval.b B=BaseA
4 mdetfval.p P=BaseSymGrpN
5 mdetfval.y Y=ℤRHomR
6 mdetfval.s S=pmSgnN
7 mdetfval.t ·˙=R
8 mdetfval.u U=mulGrpR
9 oveq m=Mpxmx=pxMx
10 9 mpteq2dv m=MxNpxmx=xNpxMx
11 10 oveq2d m=MUxNpxmx=UxNpxMx
12 11 oveq2d m=MYSp·˙UxNpxmx=YSp·˙UxNpxMx
13 12 mpteq2dv m=MpPYSp·˙UxNpxmx=pPYSp·˙UxNpxMx
14 13 oveq2d m=MRpPYSp·˙UxNpxmx=RpPYSp·˙UxNpxMx
15 1 2 3 4 5 6 7 8 mdetfval D=mBRpPYSp·˙UxNpxmx
16 ovex RpPYSp·˙UxNpxMxV
17 14 15 16 fvmpt MBDM=RpPYSp·˙UxNpxMx