Metamath Proof Explorer


Theorem meetcl

Description: Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetcl.b B=BaseK
meetcl.m ˙=meetK
meetcl.k φKV
meetcl.x φXB
meetcl.y φYB
meetcl.e φXYdom˙
Assertion meetcl φX˙YB

Proof

Step Hyp Ref Expression
1 meetcl.b B=BaseK
2 meetcl.m ˙=meetK
3 meetcl.k φKV
4 meetcl.x φXB
5 meetcl.y φYB
6 meetcl.e φXYdom˙
7 eqid glbK=glbK
8 7 2 3 4 5 meetval φX˙Y=glbKXY
9 7 2 3 4 5 meetdef φXYdom˙XYdomglbK
10 6 9 mpbid φXYdomglbK
11 1 7 3 10 glbcl φglbKXYB
12 8 11 eqeltrd φX˙YB