Metamath Proof Explorer


Theorem mercolem4

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mercolem4 θηφθχφτηφ

Proof

Step Hyp Ref Expression
1 merco2 φφφφφφφφφ
2 merco2 ηφφφθθηφθχφτηφ
3 merco2 φφφθχθχφτηφ
4 mercolem1 φφφθχθχφτηφφθχθηφθχφτηφ
5 3 4 ax-mp φθχθηφθχφτηφ
6 mercolem1 φθχθηφθχφτηφθχφθηφθχφτηφ
7 5 6 ax-mp θχφθηφθχφτηφ
8 merco2 θχφθηφθχφτηφθηφθχφτηφθηφφφθ
9 7 8 ax-mp θηφθχφτηφθηφφφθ
10 mercolem3 θηφθχφτηφθηφφφθθηφθχφτηφθφηφφφθ
11 9 10 ax-mp θηφθχφτηφθφηφφφθ
12 merco2 θηφθχφτηφθφηφφφθηφφφθθηφθχφτηφφφφφφφφφφφφφφφφφφφθηφθχφτηφ
13 11 12 ax-mp ηφφφθθηφθχφτηφφφφφφφφφφφφφφφφφφφθηφθχφτηφ
14 2 13 ax-mp φφφφφφφφφφφφφφφφφφθηφθχφτηφ
15 1 14 ax-mp φφφφφφφφφθηφθχφτηφ
16 1 15 ax-mp θηφθχφτηφ