Metamath Proof Explorer


Theorem met2ndc

Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015)

Ref Expression
Hypothesis methaus.1 J = MetOpen D
Assertion met2ndc D ∞Met X J 2 nd 𝜔 x 𝒫 X x ω cls J x = X

Proof

Step Hyp Ref Expression
1 methaus.1 J = MetOpen D
2 eqid J = J
3 2 2ndcsep J 2 nd 𝜔 x 𝒫 J x ω cls J x = J
4 1 mopnuni D ∞Met X X = J
5 4 pweqd D ∞Met X 𝒫 X = 𝒫 J
6 4 eqeq2d D ∞Met X cls J x = X cls J x = J
7 6 anbi2d D ∞Met X x ω cls J x = X x ω cls J x = J
8 5 7 rexeqbidv D ∞Met X x 𝒫 X x ω cls J x = X x 𝒫 J x ω cls J x = J
9 3 8 syl5ibr D ∞Met X J 2 nd 𝜔 x 𝒫 X x ω cls J x = X
10 elpwi x 𝒫 X x X
11 1 met2ndci D ∞Met X x X x ω cls J x = X J 2 nd 𝜔
12 11 3exp2 D ∞Met X x X x ω cls J x = X J 2 nd 𝜔
13 12 imp4a D ∞Met X x X x ω cls J x = X J 2 nd 𝜔
14 10 13 syl5 D ∞Met X x 𝒫 X x ω cls J x = X J 2 nd 𝜔
15 14 rexlimdv D ∞Met X x 𝒫 X x ω cls J x = X J 2 nd 𝜔
16 9 15 impbid D ∞Met X J 2 nd 𝜔 x 𝒫 X x ω cls J x = X