Metamath Proof Explorer


Theorem metcl

Description: Closure of the distance function of a metric space. Part of Property M1 of Kreyszig p. 3. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion metcl DMetXAXBXADB

Proof

Step Hyp Ref Expression
1 metf DMetXD:X×X
2 fovcdm D:X×XAXBXADB
3 1 2 syl3an1 DMetXAXBXADB