Metamath Proof Explorer


Theorem metflem

Description: Lemma for metf and others. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion metflem DMetXD:X×XxXyXxDy=0x=yzXxDyzDx+zDy

Proof

Step Hyp Ref Expression
1 elfvdm DMetXXdomMet
2 ismet XdomMetDMetXD:X×XxXyXxDy=0x=yzXxDyzDx+zDy
3 1 2 syl DMetXDMetXD:X×XxXyXxDy=0x=yzXxDyzDx+zDy
4 3 ibi DMetXD:X×XxXyXxDy=0x=yzXxDyzDx+zDy