Metamath Proof Explorer


Theorem metnrm

Description: A metric space is normal. (Contributed by Jeff Hankins, 31-Aug-2013) (Revised by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 30-Sep-2020)

Ref Expression
Hypothesis metnrm.j J = MetOpen D
Assertion metnrm D ∞Met X J Nrm

Proof

Step Hyp Ref Expression
1 metnrm.j J = MetOpen D
2 1 mopntop D ∞Met X J Top
3 eqid u X sup ran v x u D v * < = u X sup ran v x u D v * <
4 simp1 D ∞Met X x Clsd J y Clsd J x y = D ∞Met X
5 simp2l D ∞Met X x Clsd J y Clsd J x y = x Clsd J
6 simp2r D ∞Met X x Clsd J y Clsd J x y = y Clsd J
7 simp3 D ∞Met X x Clsd J y Clsd J x y = x y =
8 eqid s y s ball D if 1 u X sup ran v x u D v * < s 1 u X sup ran v x u D v * < s 2 = s y s ball D if 1 u X sup ran v x u D v * < s 1 u X sup ran v x u D v * < s 2
9 eqid u X sup ran v y u D v * < = u X sup ran v y u D v * <
10 eqid t x t ball D if 1 u X sup ran v y u D v * < t 1 u X sup ran v y u D v * < t 2 = t x t ball D if 1 u X sup ran v y u D v * < t 1 u X sup ran v y u D v * < t 2
11 3 1 4 5 6 7 8 9 10 metnrmlem3 D ∞Met X x Clsd J y Clsd J x y = z J w J x z y w z w =
12 11 3expia D ∞Met X x Clsd J y Clsd J x y = z J w J x z y w z w =
13 12 ralrimivva D ∞Met X x Clsd J y Clsd J x y = z J w J x z y w z w =
14 isnrm3 J Nrm J Top x Clsd J y Clsd J x y = z J w J x z y w z w =
15 2 13 14 sylanbrc D ∞Met X J Nrm