Metamath Proof Explorer


Theorem minimp-ax2

Description: Derivation of ax-2 from ax-mp and minimp . (Contributed by BJ, 4-Apr-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion minimp-ax2 φψχφψφχ

Proof

Step Hyp Ref Expression
1 minimp-ax2c φψφψχφχ
2 minimp-ax2c φψφψχφψφψχφχφψφχ
3 minimp-syllsimp φψφψχφψφψχφχφψφχφψχφψφψχφχφψφχ
4 2 3 ax-mp φψχφψφψχφχφψφχ
5 minimp-ax2c φψχφψφψχφχφψχφψφψχφχφψφχφψχφψφχ
6 minimp-syllsimp φψχφψφψχφχφψχφψφψχφχφψφχφψχφψφχφψφψχφχφψχφψφψχφχφψφχφψχφψφχ
7 5 6 ax-mp φψφψχφχφψχφψφψχφχφψφχφψχφψφχ
8 1 4 7 mp2 φψχφψφχ