Metamath Proof Explorer


Theorem minimp-ax2

Description: Derivation of ax-2 from ax-mp and minimp . (Contributed by BJ, 4-Apr-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion minimp-ax2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 minimp-ax2c ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )
2 minimp-ax2c ( ( ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) )
3 minimp-syllsimp ( ( ( ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) )
4 2 3 ax-mp ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) )
5 minimp-ax2c ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) ) → ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) )
6 minimp-syllsimp ( ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) ) → ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) ) )
7 5 6 ax-mp ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) )
8 1 4 7 mp2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )