Metamath Proof Explorer


Theorem minimp-ax2

Description: Derivation of ax-2 from ax-mp and minimp . (Contributed by BJ, 4-Apr-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion minimp-ax2
|- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )

Proof

Step Hyp Ref Expression
1 minimp-ax2c
 |-  ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) )
2 minimp-ax2c
 |-  ( ( ( ph -> ps ) -> ( ph -> ( ps -> ch ) ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) )
3 minimp-syllsimp
 |-  ( ( ( ( ph -> ps ) -> ( ph -> ( ps -> ch ) ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) )
4 2 3 ax-mp
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) )
5 minimp-ax2c
 |-  ( ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) ) -> ( ( ( ph -> ( ps -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) )
6 minimp-syllsimp
 |-  ( ( ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) ) -> ( ( ( ph -> ( ps -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ( ph -> ( ps -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) ) )
7 5 6 ax-mp
 |-  ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ( ph -> ( ps -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) )
8 1 4 7 mp2
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )