Step |
Hyp |
Ref |
Expression |
1 |
|
minimp-ax2 |
|- ( ( ph -> ( ph -> ps ) ) -> ( ( ph -> ph ) -> ( ph -> ps ) ) ) |
2 |
|
minimp-ax1 |
|- ( ph -> ( ( ph -> ps ) -> ph ) ) |
3 |
|
minimp-ax2 |
|- ( ( ph -> ( ( ph -> ps ) -> ph ) ) -> ( ( ph -> ( ph -> ps ) ) -> ( ph -> ph ) ) ) |
4 |
2 3
|
ax-mp |
|- ( ( ph -> ( ph -> ps ) ) -> ( ph -> ph ) ) |
5 |
|
minimp-ax2 |
|- ( ( ( ph -> ( ph -> ps ) ) -> ( ( ph -> ph ) -> ( ph -> ps ) ) ) -> ( ( ( ph -> ( ph -> ps ) ) -> ( ph -> ph ) ) -> ( ( ph -> ( ph -> ps ) ) -> ( ph -> ps ) ) ) ) |
6 |
1 4 5
|
mp2 |
|- ( ( ph -> ( ph -> ps ) ) -> ( ph -> ps ) ) |