Metamath Proof Explorer


Theorem mircl

Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirval.a φAP
mirfv.m M=SA
mircl.x φXP
Assertion mircl φMXP

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirval.a φAP
8 mirfv.m M=SA
9 mircl.x φXP
10 1 2 3 4 5 6 7 8 mirf φM:PP
11 10 9 ffvelcdmd φMXP