Metamath Proof Explorer


Theorem mircom

Description: Variation on mirmir . (Contributed by Thierry Arnoux, 10-Nov-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirval.a φAP
mirfv.m M=SA
mirmir.b φBP
mircom.1 φMB=C
Assertion mircom φMC=B

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirval.a φAP
8 mirfv.m M=SA
9 mirmir.b φBP
10 mircom.1 φMB=C
11 10 fveq2d φMMB=MC
12 1 2 3 4 5 6 7 8 9 mirmir φMMB=B
13 11 12 eqtr3d φMC=B