Metamath Proof Explorer
Description: Variation on mirmir . (Contributed by Thierry Arnoux, 10-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
mirval.p |
|
|
|
mirval.d |
|
|
|
mirval.i |
|
|
|
mirval.l |
|
|
|
mirval.s |
|
|
|
mirval.g |
|
|
|
mirval.a |
|
|
|
mirfv.m |
|
|
|
mirmir.b |
|
|
|
mircom.1 |
|
|
Assertion |
mircom |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|
2 |
|
mirval.d |
|
3 |
|
mirval.i |
|
4 |
|
mirval.l |
|
5 |
|
mirval.s |
|
6 |
|
mirval.g |
|
7 |
|
mirval.a |
|
8 |
|
mirfv.m |
|
9 |
|
mirmir.b |
|
10 |
|
mircom.1 |
|
11 |
10
|
fveq2d |
|
12 |
1 2 3 4 5 6 7 8 9
|
mirmir |
|
13 |
11 12
|
eqtr3d |
|