Metamath Proof Explorer


Theorem mirreu

Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
mirmir.b φ B P
Assertion mirreu φ ∃! a P M a = B

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 mirmir.b φ B P
10 1 2 3 4 5 6 7 8 9 mircl φ M B P
11 1 2 3 4 5 6 7 8 9 mirmir φ M M B = B
12 6 ad2antrr φ a P M a = B G 𝒢 Tarski
13 7 ad2antrr φ a P M a = B A P
14 simplr φ a P M a = B a P
15 1 2 3 4 5 12 13 8 14 mirmir φ a P M a = B M M a = a
16 simpr φ a P M a = B M a = B
17 16 fveq2d φ a P M a = B M M a = M B
18 15 17 eqtr3d φ a P M a = B a = M B
19 18 ex φ a P M a = B a = M B
20 19 ralrimiva φ a P M a = B a = M B
21 fveqeq2 a = M B M a = B M M B = B
22 21 eqreu M B P M M B = B a P M a = B a = M B ∃! a P M a = B
23 10 11 20 22 syl3anc φ ∃! a P M a = B