Metamath Proof Explorer


Theorem mirreu

Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirval.a ( 𝜑𝐴𝑃 )
mirfv.m 𝑀 = ( 𝑆𝐴 )
mirmir.b ( 𝜑𝐵𝑃 )
Assertion mirreu ( 𝜑 → ∃! 𝑎𝑃 ( 𝑀𝑎 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirval.a ( 𝜑𝐴𝑃 )
8 mirfv.m 𝑀 = ( 𝑆𝐴 )
9 mirmir.b ( 𝜑𝐵𝑃 )
10 1 2 3 4 5 6 7 8 9 mircl ( 𝜑 → ( 𝑀𝐵 ) ∈ 𝑃 )
11 1 2 3 4 5 6 7 8 9 mirmir ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝐵 ) ) = 𝐵 )
12 6 ad2antrr ( ( ( 𝜑𝑎𝑃 ) ∧ ( 𝑀𝑎 ) = 𝐵 ) → 𝐺 ∈ TarskiG )
13 7 ad2antrr ( ( ( 𝜑𝑎𝑃 ) ∧ ( 𝑀𝑎 ) = 𝐵 ) → 𝐴𝑃 )
14 simplr ( ( ( 𝜑𝑎𝑃 ) ∧ ( 𝑀𝑎 ) = 𝐵 ) → 𝑎𝑃 )
15 1 2 3 4 5 12 13 8 14 mirmir ( ( ( 𝜑𝑎𝑃 ) ∧ ( 𝑀𝑎 ) = 𝐵 ) → ( 𝑀 ‘ ( 𝑀𝑎 ) ) = 𝑎 )
16 simpr ( ( ( 𝜑𝑎𝑃 ) ∧ ( 𝑀𝑎 ) = 𝐵 ) → ( 𝑀𝑎 ) = 𝐵 )
17 16 fveq2d ( ( ( 𝜑𝑎𝑃 ) ∧ ( 𝑀𝑎 ) = 𝐵 ) → ( 𝑀 ‘ ( 𝑀𝑎 ) ) = ( 𝑀𝐵 ) )
18 15 17 eqtr3d ( ( ( 𝜑𝑎𝑃 ) ∧ ( 𝑀𝑎 ) = 𝐵 ) → 𝑎 = ( 𝑀𝐵 ) )
19 18 ex ( ( 𝜑𝑎𝑃 ) → ( ( 𝑀𝑎 ) = 𝐵𝑎 = ( 𝑀𝐵 ) ) )
20 19 ralrimiva ( 𝜑 → ∀ 𝑎𝑃 ( ( 𝑀𝑎 ) = 𝐵𝑎 = ( 𝑀𝐵 ) ) )
21 fveqeq2 ( 𝑎 = ( 𝑀𝐵 ) → ( ( 𝑀𝑎 ) = 𝐵 ↔ ( 𝑀 ‘ ( 𝑀𝐵 ) ) = 𝐵 ) )
22 21 eqreu ( ( ( 𝑀𝐵 ) ∈ 𝑃 ∧ ( 𝑀 ‘ ( 𝑀𝐵 ) ) = 𝐵 ∧ ∀ 𝑎𝑃 ( ( 𝑀𝑎 ) = 𝐵𝑎 = ( 𝑀𝐵 ) ) ) → ∃! 𝑎𝑃 ( 𝑀𝑎 ) = 𝐵 )
23 10 11 20 22 syl3anc ( 𝜑 → ∃! 𝑎𝑃 ( 𝑀𝑎 ) = 𝐵 )