| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirval.a |
|- ( ph -> A e. P ) |
| 8 |
|
mirfv.m |
|- M = ( S ` A ) |
| 9 |
|
mirmir.b |
|- ( ph -> B e. P ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
mircl |
|- ( ph -> ( M ` B ) e. P ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
mirmir |
|- ( ph -> ( M ` ( M ` B ) ) = B ) |
| 12 |
6
|
ad2antrr |
|- ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> G e. TarskiG ) |
| 13 |
7
|
ad2antrr |
|- ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> A e. P ) |
| 14 |
|
simplr |
|- ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> a e. P ) |
| 15 |
1 2 3 4 5 12 13 8 14
|
mirmir |
|- ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> ( M ` ( M ` a ) ) = a ) |
| 16 |
|
simpr |
|- ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> ( M ` a ) = B ) |
| 17 |
16
|
fveq2d |
|- ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> ( M ` ( M ` a ) ) = ( M ` B ) ) |
| 18 |
15 17
|
eqtr3d |
|- ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> a = ( M ` B ) ) |
| 19 |
18
|
ex |
|- ( ( ph /\ a e. P ) -> ( ( M ` a ) = B -> a = ( M ` B ) ) ) |
| 20 |
19
|
ralrimiva |
|- ( ph -> A. a e. P ( ( M ` a ) = B -> a = ( M ` B ) ) ) |
| 21 |
|
fveqeq2 |
|- ( a = ( M ` B ) -> ( ( M ` a ) = B <-> ( M ` ( M ` B ) ) = B ) ) |
| 22 |
21
|
eqreu |
|- ( ( ( M ` B ) e. P /\ ( M ` ( M ` B ) ) = B /\ A. a e. P ( ( M ` a ) = B -> a = ( M ` B ) ) ) -> E! a e. P ( M ` a ) = B ) |
| 23 |
10 11 20 22
|
syl3anc |
|- ( ph -> E! a e. P ( M ` a ) = B ) |