Metamath Proof Explorer


Theorem mndtcco2

Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φMMnd
mndtcbas.b φB=BaseC
mndtchom.x φXB
mndtchom.y φYB
mndtcco.z φZB
mndtcco.o φ·˙=compC
mndtcco2.o2 No typesetting found for |- ( ph -> .o. = ( <. X , Y >. .x. Z ) ) with typecode |-
Assertion mndtcco2 Could not format assertion : No typesetting found for |- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φMMnd
3 mndtcbas.b φB=BaseC
4 mndtchom.x φXB
5 mndtchom.y φYB
6 mndtcco.z φZB
7 mndtcco.o φ·˙=compC
8 mndtcco2.o2 Could not format ( ph -> .o. = ( <. X , Y >. .x. Z ) ) : No typesetting found for |- ( ph -> .o. = ( <. X , Y >. .x. Z ) ) with typecode |-
9 1 2 3 4 5 6 7 mndtcco φXY·˙Z=+M
10 8 9 eqtrd Could not format ( ph -> .o. = ( +g ` M ) ) : No typesetting found for |- ( ph -> .o. = ( +g ` M ) ) with typecode |-
11 10 oveqd Could not format ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) : No typesetting found for |- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) with typecode |-