Metamath Proof Explorer


Theorem mnflt

Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion mnflt A−∞<A

Proof

Step Hyp Ref Expression
1 eqid −∞=−∞
2 olc −∞=−∞A−∞A=+∞−∞=−∞A
3 1 2 mpan A−∞A=+∞−∞=−∞A
4 3 olcd A−∞A−∞<A−∞=−∞A=+∞−∞A=+∞−∞=−∞A
5 mnfxr −∞*
6 rexr AA*
7 ltxr −∞*A*−∞<A−∞A−∞<A−∞=−∞A=+∞−∞A=+∞−∞=−∞A
8 5 6 7 sylancr A−∞<A−∞A−∞<A−∞=−∞A=+∞−∞A=+∞−∞=−∞A
9 4 8 mpbird A−∞<A