Metamath Proof Explorer


Theorem mnfnre

Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion mnfnre −∞

Proof

Step Hyp Ref Expression
1 df-mnf −∞=𝒫+∞
2 df-pnf +∞=𝒫
3 2 pweqi 𝒫+∞=𝒫𝒫
4 1 3 eqtri −∞=𝒫𝒫
5 2pwuninel ¬𝒫𝒫
6 4 5 eqneltri ¬−∞
7 recn −∞−∞
8 6 7 mto ¬−∞
9 8 nelir −∞