Metamath Proof Explorer


Theorem mnringaddgd

Description: The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringaddgd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringaddgd.2 A = Base M
mnringaddgd.3 V = R freeLMod A
mnringaddgd.4 φ R U
mnringaddgd.5 φ M W
Assertion mnringaddgd φ + V = + F

Proof

Step Hyp Ref Expression
1 mnringaddgd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringaddgd.2 A = Base M
3 mnringaddgd.3 V = R freeLMod A
4 mnringaddgd.4 φ R U
5 mnringaddgd.5 φ M W
6 plusgid + 𝑔 = Slot + ndx
7 plusgndxnmulrndx + ndx ndx
8 1 6 7 2 3 4 5 mnringnmulrd φ + V = + F