Metamath Proof Explorer


Theorem mnringnmulrd

Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024) (Revised by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringnmulrd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringnmulrd.2 E = Slot E ndx
mnringnmulrd.4 E ndx ndx
mnringnmulrd.5 A = Base M
mnringnmulrd.6 V = R freeLMod A
mnringnmulrd.7 φ R U
mnringnmulrd.8 φ M W
Assertion mnringnmulrd φ E V = E F

Proof

Step Hyp Ref Expression
1 mnringnmulrd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringnmulrd.2 E = Slot E ndx
3 mnringnmulrd.4 E ndx ndx
4 mnringnmulrd.5 A = Base M
5 mnringnmulrd.6 V = R freeLMod A
6 mnringnmulrd.7 φ R U
7 mnringnmulrd.8 φ M W
8 2 3 setsnid E V = E V sSet ndx x Base V , y Base V V a A , b A i A if i = a + M b x a R y b 0 R
9 eqid R = R
10 eqid 0 R = 0 R
11 eqid + M = + M
12 eqid Base V = Base V
13 1 9 10 4 11 5 12 6 7 mnringvald φ F = V sSet ndx x Base V , y Base V V a A , b A i A if i = a + M b x a R y b 0 R
14 13 fveq2d φ E F = E V sSet ndx x Base V , y Base V V a A , b A i A if i = a + M b x a R y b 0 R
15 8 14 eqtr4id φ E V = E F