Metamath Proof Explorer


Theorem mnringnmulrd

Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024) (Revised by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringnmulrd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringnmulrd.2 E=SlotEndx
mnringnmulrd.4 Endxndx
mnringnmulrd.5 A=BaseM
mnringnmulrd.6 V=RfreeLModA
mnringnmulrd.7 φRU
mnringnmulrd.8 φMW
Assertion mnringnmulrd φEV=EF

Proof

Step Hyp Ref Expression
1 mnringnmulrd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringnmulrd.2 E=SlotEndx
3 mnringnmulrd.4 Endxndx
4 mnringnmulrd.5 A=BaseM
5 mnringnmulrd.6 V=RfreeLModA
6 mnringnmulrd.7 φRU
7 mnringnmulrd.8 φMW
8 2 3 setsnid EV=EVsSetndxxBaseV,yBaseVVaA,bAiAifi=a+MbxaRyb0R
9 eqid R=R
10 eqid 0R=0R
11 eqid +M=+M
12 eqid BaseV=BaseV
13 1 9 10 4 11 5 12 6 7 mnringvald φF=VsSetndxxBaseV,yBaseVVaA,bAiAifi=a+MbxaRyb0R
14 13 fveq2d φEF=EVsSetndxxBaseV,yBaseVVaA,bAiAifi=a+MbxaRyb0R
15 8 14 eqtr4id φEV=EF