Metamath Proof Explorer


Theorem mnringnmulrdOLD

Description: Obsolete version of mnringnmulrd as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses mnringnmulrdOLD.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringnmulrdOLD.2 E=SlotN
mnringnmulrdOLD.3 N
mnringnmulrdOLD.4 Nndx
mnringnmulrdOLD.5 A=BaseM
mnringnmulrdOLD.6 V=RfreeLModA
mnringnmulrdOLD.7 φRU
mnringnmulrdOLD.8 φMW
Assertion mnringnmulrdOLD φEV=EF

Proof

Step Hyp Ref Expression
1 mnringnmulrdOLD.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringnmulrdOLD.2 E=SlotN
3 mnringnmulrdOLD.3 N
4 mnringnmulrdOLD.4 Nndx
5 mnringnmulrdOLD.5 A=BaseM
6 mnringnmulrdOLD.6 V=RfreeLModA
7 mnringnmulrdOLD.7 φRU
8 mnringnmulrdOLD.8 φMW
9 2 3 ndxid E=SlotEndx
10 2 3 ndxarg Endx=N
11 10 4 eqnetri Endxndx
12 9 11 setsnid EV=EVsSetndxxBaseV,yBaseVVaA,bAiAifi=a+MbxaRyb0R
13 eqid R=R
14 eqid 0R=0R
15 eqid +M=+M
16 eqid BaseV=BaseV
17 1 13 14 5 15 6 16 7 8 mnringvald φF=VsSetndxxBaseV,yBaseVVaA,bAiAifi=a+MbxaRyb0R
18 17 fveq2d φEF=EVsSetndxxBaseV,yBaseVVaA,bAiAifi=a+MbxaRyb0R
19 12 18 eqtr4id φEV=EF