| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringnmulrdOLD.1 | ⊢ 𝐹  =  ( 𝑅  MndRing  𝑀 ) | 
						
							| 2 |  | mnringnmulrdOLD.2 | ⊢ 𝐸  =  Slot  𝑁 | 
						
							| 3 |  | mnringnmulrdOLD.3 | ⊢ 𝑁  ∈  ℕ | 
						
							| 4 |  | mnringnmulrdOLD.4 | ⊢ 𝑁  ≠  ( .r ‘ ndx ) | 
						
							| 5 |  | mnringnmulrdOLD.5 | ⊢ 𝐴  =  ( Base ‘ 𝑀 ) | 
						
							| 6 |  | mnringnmulrdOLD.6 | ⊢ 𝑉  =  ( 𝑅  freeLMod  𝐴 ) | 
						
							| 7 |  | mnringnmulrdOLD.7 | ⊢ ( 𝜑  →  𝑅  ∈  𝑈 ) | 
						
							| 8 |  | mnringnmulrdOLD.8 | ⊢ ( 𝜑  →  𝑀  ∈  𝑊 ) | 
						
							| 9 | 2 3 | ndxid | ⊢ 𝐸  =  Slot  ( 𝐸 ‘ ndx ) | 
						
							| 10 | 2 3 | ndxarg | ⊢ ( 𝐸 ‘ ndx )  =  𝑁 | 
						
							| 11 | 10 4 | eqnetri | ⊢ ( 𝐸 ‘ ndx )  ≠  ( .r ‘ ndx ) | 
						
							| 12 | 9 11 | setsnid | ⊢ ( 𝐸 ‘ 𝑉 )  =  ( 𝐸 ‘ ( 𝑉  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑉 ) ,  𝑦  ∈  ( Base ‘ 𝑉 )  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) ) 〉 ) ) | 
						
							| 13 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 15 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑉 )  =  ( Base ‘ 𝑉 ) | 
						
							| 17 | 1 13 14 5 15 6 16 7 8 | mnringvald | ⊢ ( 𝜑  →  𝐹  =  ( 𝑉  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑉 ) ,  𝑦  ∈  ( Base ‘ 𝑉 )  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) ) 〉 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝐹 )  =  ( 𝐸 ‘ ( 𝑉  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑉 ) ,  𝑦  ∈  ( Base ‘ 𝑉 )  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) ) 〉 ) ) ) | 
						
							| 19 | 12 18 | eqtr4id | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑉 )  =  ( 𝐸 ‘ 𝐹 ) ) |