Metamath Proof Explorer


Theorem mnringnmulrdOLD

Description: Obsolete version of mnringnmulrd as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses mnringnmulrdOLD.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringnmulrdOLD.2 𝐸 = Slot 𝑁
mnringnmulrdOLD.3 𝑁 ∈ ℕ
mnringnmulrdOLD.4 𝑁 ≠ ( .r ‘ ndx )
mnringnmulrdOLD.5 𝐴 = ( Base ‘ 𝑀 )
mnringnmulrdOLD.6 𝑉 = ( 𝑅 freeLMod 𝐴 )
mnringnmulrdOLD.7 ( 𝜑𝑅𝑈 )
mnringnmulrdOLD.8 ( 𝜑𝑀𝑊 )
Assertion mnringnmulrdOLD ( 𝜑 → ( 𝐸𝑉 ) = ( 𝐸𝐹 ) )

Proof

Step Hyp Ref Expression
1 mnringnmulrdOLD.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnringnmulrdOLD.2 𝐸 = Slot 𝑁
3 mnringnmulrdOLD.3 𝑁 ∈ ℕ
4 mnringnmulrdOLD.4 𝑁 ≠ ( .r ‘ ndx )
5 mnringnmulrdOLD.5 𝐴 = ( Base ‘ 𝑀 )
6 mnringnmulrdOLD.6 𝑉 = ( 𝑅 freeLMod 𝐴 )
7 mnringnmulrdOLD.7 ( 𝜑𝑅𝑈 )
8 mnringnmulrdOLD.8 ( 𝜑𝑀𝑊 )
9 2 3 ndxid 𝐸 = Slot ( 𝐸 ‘ ndx )
10 2 3 ndxarg ( 𝐸 ‘ ndx ) = 𝑁
11 10 4 eqnetri ( 𝐸 ‘ ndx ) ≠ ( .r ‘ ndx )
12 9 11 setsnid ( 𝐸𝑉 ) = ( 𝐸 ‘ ( 𝑉 sSet ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑉 ) , 𝑦 ∈ ( Base ‘ 𝑉 ) ↦ ( 𝑉 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g𝑀 ) 𝑏 ) , ( ( 𝑥𝑎 ) ( .r𝑅 ) ( 𝑦𝑏 ) ) , ( 0g𝑅 ) ) ) ) ) ) ⟩ ) )
13 eqid ( .r𝑅 ) = ( .r𝑅 )
14 eqid ( 0g𝑅 ) = ( 0g𝑅 )
15 eqid ( +g𝑀 ) = ( +g𝑀 )
16 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
17 1 13 14 5 15 6 16 7 8 mnringvald ( 𝜑𝐹 = ( 𝑉 sSet ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑉 ) , 𝑦 ∈ ( Base ‘ 𝑉 ) ↦ ( 𝑉 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g𝑀 ) 𝑏 ) , ( ( 𝑥𝑎 ) ( .r𝑅 ) ( 𝑦𝑏 ) ) , ( 0g𝑅 ) ) ) ) ) ) ⟩ ) )
18 17 fveq2d ( 𝜑 → ( 𝐸𝐹 ) = ( 𝐸 ‘ ( 𝑉 sSet ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑉 ) , 𝑦 ∈ ( Base ‘ 𝑉 ) ↦ ( 𝑉 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g𝑀 ) 𝑏 ) , ( ( 𝑥𝑎 ) ( .r𝑅 ) ( 𝑦𝑏 ) ) , ( 0g𝑅 ) ) ) ) ) ) ⟩ ) ) )
19 12 18 eqtr4id ( 𝜑 → ( 𝐸𝑉 ) = ( 𝐸𝐹 ) )