Step |
Hyp |
Ref |
Expression |
1 |
|
mnringnmulrdOLD.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
2 |
|
mnringnmulrdOLD.2 |
⊢ 𝐸 = Slot 𝑁 |
3 |
|
mnringnmulrdOLD.3 |
⊢ 𝑁 ∈ ℕ |
4 |
|
mnringnmulrdOLD.4 |
⊢ 𝑁 ≠ ( .r ‘ ndx ) |
5 |
|
mnringnmulrdOLD.5 |
⊢ 𝐴 = ( Base ‘ 𝑀 ) |
6 |
|
mnringnmulrdOLD.6 |
⊢ 𝑉 = ( 𝑅 freeLMod 𝐴 ) |
7 |
|
mnringnmulrdOLD.7 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
8 |
|
mnringnmulrdOLD.8 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
9 |
2 3
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
10 |
2 3
|
ndxarg |
⊢ ( 𝐸 ‘ ndx ) = 𝑁 |
11 |
10 4
|
eqnetri |
⊢ ( 𝐸 ‘ ndx ) ≠ ( .r ‘ ndx ) |
12 |
9 11
|
setsnid |
⊢ ( 𝐸 ‘ 𝑉 ) = ( 𝐸 ‘ ( 𝑉 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑉 ) , 𝑦 ∈ ( Base ‘ 𝑉 ) ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) 〉 ) ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
17 |
1 13 14 5 15 6 16 7 8
|
mnringvald |
⊢ ( 𝜑 → 𝐹 = ( 𝑉 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑉 ) , 𝑦 ∈ ( Base ‘ 𝑉 ) ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) 〉 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐹 ) = ( 𝐸 ‘ ( 𝑉 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑉 ) , 𝑦 ∈ ( Base ‘ 𝑉 ) ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) 〉 ) ) ) |
19 |
12 18
|
eqtr4id |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑉 ) = ( 𝐸 ‘ 𝐹 ) ) |