| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringvald.1 | ⊢ 𝐹  =  ( 𝑅  MndRing  𝑀 ) | 
						
							| 2 |  | mnringvald.2 | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | mnringvald.3 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mnringvald.4 | ⊢ 𝐴  =  ( Base ‘ 𝑀 ) | 
						
							| 5 |  | mnringvald.5 | ⊢  +   =  ( +g ‘ 𝑀 ) | 
						
							| 6 |  | mnringvald.6 | ⊢ 𝑉  =  ( 𝑅  freeLMod  𝐴 ) | 
						
							| 7 |  | mnringvald.7 | ⊢ 𝐵  =  ( Base ‘ 𝑉 ) | 
						
							| 8 |  | mnringvald.8 | ⊢ ( 𝜑  →  𝑅  ∈  𝑈 ) | 
						
							| 9 |  | mnringvald.9 | ⊢ ( 𝜑  →  𝑀  ∈  𝑊 ) | 
						
							| 10 | 8 | elexd | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 11 | 9 | elexd | ⊢ ( 𝜑  →  𝑀  ∈  V ) | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑣 ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 ) | 
						
							| 13 |  | nfcvd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  Ⅎ 𝑣 ( 𝑉  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) ) 〉 ) ) | 
						
							| 14 |  | ovexd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) )  ∈  V ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) ) | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  𝑟  =  𝑅 ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑚  =  𝑀  →  ( Base ‘ 𝑚 )  =  ( Base ‘ 𝑀 ) ) | 
						
							| 18 | 17 4 | eqtr4di | ⊢ ( 𝑚  =  𝑀  →  ( Base ‘ 𝑚 )  =  𝐴 ) | 
						
							| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( Base ‘ 𝑚 )  =  𝐴 ) | 
						
							| 20 | 16 19 | oveq12d | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) )  =  ( 𝑅  freeLMod  𝐴 ) ) | 
						
							| 21 | 15 20 | eqtrd | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  𝑣  =  ( 𝑅  freeLMod  𝐴 ) ) | 
						
							| 22 | 21 6 | eqtr4di | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  𝑣  =  𝑉 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( Base ‘ 𝑣 )  =  ( Base ‘ 𝑉 ) ) | 
						
							| 24 | 23 7 | eqtr4di | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( Base ‘ 𝑣 )  =  𝐵 ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑚  =  𝑀  →  ( +g ‘ 𝑚 )  =  ( +g ‘ 𝑀 ) ) | 
						
							| 26 | 25 5 | eqtr4di | ⊢ ( 𝑚  =  𝑀  →  ( +g ‘ 𝑚 )  =   +  ) | 
						
							| 27 | 26 | oveqd | ⊢ ( 𝑚  =  𝑀  →  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 )  =  ( 𝑎  +  𝑏 ) ) | 
						
							| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 )  =  ( 𝑎  +  𝑏 ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 )  ↔  𝑖  =  ( 𝑎  +  𝑏 ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( .r ‘ 𝑟 )  =  ( .r ‘ 𝑅 ) ) | 
						
							| 31 | 30 2 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( .r ‘ 𝑟 )  =   ·  ) | 
						
							| 32 | 31 | oveqd | ⊢ ( 𝑟  =  𝑅  →  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) )  =  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ) | 
						
							| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) )  =  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( 0g ‘ 𝑟 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 35 | 34 3 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( 0g ‘ 𝑟 )  =   0  ) | 
						
							| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( 0g ‘ 𝑟 )  =   0  ) | 
						
							| 37 | 29 33 36 | ifbieq12d | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) )  =  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) | 
						
							| 38 | 19 37 | mpteq12dv | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) )  =  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) | 
						
							| 39 | 19 19 38 | mpoeq123dv | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) )  =  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) | 
						
							| 40 | 22 39 | oveq12d | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) )  =  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) ) | 
						
							| 41 | 24 24 40 | mpoeq123dv | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) ) ) | 
						
							| 42 | 41 | opeq2d | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉  =  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) ) 〉 ) | 
						
							| 43 | 22 42 | oveq12d | ⊢ ( ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  ∧  𝑣  =  ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) )  →  ( 𝑣  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 )  =  ( 𝑉  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) ) 〉 ) ) | 
						
							| 44 | 12 13 14 43 | csbiedf | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  ⦋ ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) )  /  𝑣 ⦌ ( 𝑣  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 )  =  ( 𝑉  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) ) 〉 ) ) | 
						
							| 45 |  | df-mnring | ⊢  MndRing   =  ( 𝑟  ∈  V ,  𝑚  ∈  V  ↦  ⦋ ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) )  /  𝑣 ⦌ ( 𝑣  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 ) ) | 
						
							| 46 |  | ovex | ⊢ ( 𝑉  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) ) 〉 )  ∈  V | 
						
							| 47 | 44 45 46 | ovmpoa | ⊢ ( ( 𝑅  ∈  V  ∧  𝑀  ∈  V )  →  ( 𝑅  MndRing  𝑀 )  =  ( 𝑉  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) ) 〉 ) ) | 
						
							| 48 | 10 11 47 | syl2anc | ⊢ ( 𝜑  →  ( 𝑅  MndRing  𝑀 )  =  ( 𝑉  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) ) 〉 ) ) | 
						
							| 49 | 1 48 | eqtrid | ⊢ ( 𝜑  →  𝐹  =  ( 𝑉  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑉  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ·  ( 𝑦 ‘ 𝑏 ) ) ,   0  ) ) ) ) ) 〉 ) ) |