Step |
Hyp |
Ref |
Expression |
1 |
|
mnringvald.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
2 |
|
mnringvald.2 |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
mnringvald.3 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mnringvald.4 |
⊢ 𝐴 = ( Base ‘ 𝑀 ) |
5 |
|
mnringvald.5 |
⊢ + = ( +g ‘ 𝑀 ) |
6 |
|
mnringvald.6 |
⊢ 𝑉 = ( 𝑅 freeLMod 𝐴 ) |
7 |
|
mnringvald.7 |
⊢ 𝐵 = ( Base ‘ 𝑉 ) |
8 |
|
mnringvald.8 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
9 |
|
mnringvald.9 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
10 |
8
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
11 |
9
|
elexd |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
12 |
|
nfv |
⊢ Ⅎ 𝑣 ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) |
13 |
|
nfcvd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → Ⅎ 𝑣 ( 𝑉 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ) |
14 |
|
ovexd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ∈ V ) |
15 |
|
simpr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) |
16 |
|
simpll |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → 𝑟 = 𝑅 ) |
17 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
18 |
17 4
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐴 ) |
19 |
18
|
ad2antlr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( Base ‘ 𝑚 ) = 𝐴 ) |
20 |
16 19
|
oveq12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) = ( 𝑅 freeLMod 𝐴 ) ) |
21 |
15 20
|
eqtrd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → 𝑣 = ( 𝑅 freeLMod 𝐴 ) ) |
22 |
21 6
|
eqtr4di |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → 𝑣 = 𝑉 ) |
23 |
22
|
fveq2d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( Base ‘ 𝑣 ) = ( Base ‘ 𝑉 ) ) |
24 |
23 7
|
eqtr4di |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( Base ‘ 𝑣 ) = 𝐵 ) |
25 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) |
26 |
25 5
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = + ) |
27 |
26
|
oveqd |
⊢ ( 𝑚 = 𝑀 → ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) = ( 𝑎 + 𝑏 ) ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) = ( 𝑎 + 𝑏 ) ) |
29 |
28
|
eqeq2d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( 𝑖 = ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ↔ 𝑖 = ( 𝑎 + 𝑏 ) ) ) |
30 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
31 |
30 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
32 |
31
|
oveqd |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) = ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) = ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) ) |
34 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
35 |
34 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( 0g ‘ 𝑟 ) = 0 ) |
37 |
29 33 36
|
ifbieq12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑟 ) ) = if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) |
38 |
19 37
|
mpteq12dv |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( 𝑖 ∈ ( Base ‘ 𝑚 ) ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑟 ) ) ) = ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) |
39 |
19 19 38
|
mpoeq123dv |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑚 ) , 𝑏 ∈ ( Base ‘ 𝑚 ) ↦ ( 𝑖 ∈ ( Base ‘ 𝑚 ) ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑟 ) ) ) ) = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) |
40 |
22 39
|
oveq12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( 𝑣 Σg ( 𝑎 ∈ ( Base ‘ 𝑚 ) , 𝑏 ∈ ( Base ‘ 𝑚 ) ↦ ( 𝑖 ∈ ( Base ‘ 𝑚 ) ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) = ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) |
41 |
24 24 40
|
mpoeq123dv |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝑣 ) , 𝑦 ∈ ( Base ‘ 𝑣 ) ↦ ( 𝑣 Σg ( 𝑎 ∈ ( Base ‘ 𝑚 ) , 𝑏 ∈ ( Base ‘ 𝑚 ) ↦ ( 𝑖 ∈ ( Base ‘ 𝑚 ) ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) ) |
42 |
41
|
opeq2d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑣 ) , 𝑦 ∈ ( Base ‘ 𝑣 ) ↦ ( 𝑣 Σg ( 𝑎 ∈ ( Base ‘ 𝑚 ) , 𝑏 ∈ ( Base ‘ 𝑚 ) ↦ ( 𝑖 ∈ ( Base ‘ 𝑚 ) ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 = 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) |
43 |
22 42
|
oveq12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) ∧ 𝑣 = ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) ) → ( 𝑣 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑣 ) , 𝑦 ∈ ( Base ‘ 𝑣 ) ↦ ( 𝑣 Σg ( 𝑎 ∈ ( Base ‘ 𝑚 ) , 𝑏 ∈ ( Base ‘ 𝑚 ) ↦ ( 𝑖 ∈ ( Base ‘ 𝑚 ) ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 ) = ( 𝑉 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ) |
44 |
12 13 14 43
|
csbiedf |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → ⦋ ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) / 𝑣 ⦌ ( 𝑣 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑣 ) , 𝑦 ∈ ( Base ‘ 𝑣 ) ↦ ( 𝑣 Σg ( 𝑎 ∈ ( Base ‘ 𝑚 ) , 𝑏 ∈ ( Base ‘ 𝑚 ) ↦ ( 𝑖 ∈ ( Base ‘ 𝑚 ) ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 ) = ( 𝑉 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ) |
45 |
|
df-mnring |
⊢ MndRing = ( 𝑟 ∈ V , 𝑚 ∈ V ↦ ⦋ ( 𝑟 freeLMod ( Base ‘ 𝑚 ) ) / 𝑣 ⦌ ( 𝑣 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑣 ) , 𝑦 ∈ ( Base ‘ 𝑣 ) ↦ ( 𝑣 Σg ( 𝑎 ∈ ( Base ‘ 𝑚 ) , 𝑏 ∈ ( Base ‘ 𝑚 ) ↦ ( 𝑖 ∈ ( Base ‘ 𝑚 ) ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 ) ) |
46 |
|
ovex |
⊢ ( 𝑉 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ∈ V |
47 |
44 45 46
|
ovmpoa |
⊢ ( ( 𝑅 ∈ V ∧ 𝑀 ∈ V ) → ( 𝑅 MndRing 𝑀 ) = ( 𝑉 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ) |
48 |
10 11 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 MndRing 𝑀 ) = ( 𝑉 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ) |
49 |
1 48
|
syl5eq |
⊢ ( 𝜑 → 𝐹 = ( 𝑉 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑉 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ) |