| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cmnring | ⊢  MndRing | 
						
							| 1 |  | vr | ⊢ 𝑟 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vm | ⊢ 𝑚 | 
						
							| 4 | 1 | cv | ⊢ 𝑟 | 
						
							| 5 |  | cfrlm | ⊢  freeLMod | 
						
							| 6 |  | cbs | ⊢ Base | 
						
							| 7 | 3 | cv | ⊢ 𝑚 | 
						
							| 8 | 7 6 | cfv | ⊢ ( Base ‘ 𝑚 ) | 
						
							| 9 | 4 8 5 | co | ⊢ ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) ) | 
						
							| 10 |  | vv | ⊢ 𝑣 | 
						
							| 11 | 10 | cv | ⊢ 𝑣 | 
						
							| 12 |  | csts | ⊢  sSet | 
						
							| 13 |  | cmulr | ⊢ .r | 
						
							| 14 |  | cnx | ⊢ ndx | 
						
							| 15 | 14 13 | cfv | ⊢ ( .r ‘ ndx ) | 
						
							| 16 |  | vx | ⊢ 𝑥 | 
						
							| 17 | 11 6 | cfv | ⊢ ( Base ‘ 𝑣 ) | 
						
							| 18 |  | vy | ⊢ 𝑦 | 
						
							| 19 |  | cgsu | ⊢  Σg | 
						
							| 20 |  | va | ⊢ 𝑎 | 
						
							| 21 |  | vb | ⊢ 𝑏 | 
						
							| 22 |  | vi | ⊢ 𝑖 | 
						
							| 23 | 22 | cv | ⊢ 𝑖 | 
						
							| 24 | 20 | cv | ⊢ 𝑎 | 
						
							| 25 |  | cplusg | ⊢ +g | 
						
							| 26 | 7 25 | cfv | ⊢ ( +g ‘ 𝑚 ) | 
						
							| 27 | 21 | cv | ⊢ 𝑏 | 
						
							| 28 | 24 27 26 | co | ⊢ ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) | 
						
							| 29 | 23 28 | wceq | ⊢ 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) | 
						
							| 30 | 16 | cv | ⊢ 𝑥 | 
						
							| 31 | 24 30 | cfv | ⊢ ( 𝑥 ‘ 𝑎 ) | 
						
							| 32 | 4 13 | cfv | ⊢ ( .r ‘ 𝑟 ) | 
						
							| 33 | 18 | cv | ⊢ 𝑦 | 
						
							| 34 | 27 33 | cfv | ⊢ ( 𝑦 ‘ 𝑏 ) | 
						
							| 35 | 31 34 32 | co | ⊢ ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) | 
						
							| 36 |  | c0g | ⊢ 0g | 
						
							| 37 | 4 36 | cfv | ⊢ ( 0g ‘ 𝑟 ) | 
						
							| 38 | 29 35 37 | cif | ⊢ if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) | 
						
							| 39 | 22 8 38 | cmpt | ⊢ ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) | 
						
							| 40 | 20 21 8 8 39 | cmpo | ⊢ ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) | 
						
							| 41 | 11 40 19 | co | ⊢ ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) | 
						
							| 42 | 16 18 17 17 41 | cmpo | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) ) | 
						
							| 43 | 15 42 | cop | ⊢ 〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 | 
						
							| 44 | 11 43 12 | co | ⊢ ( 𝑣  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 ) | 
						
							| 45 | 10 9 44 | csb | ⊢ ⦋ ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) )  /  𝑣 ⦌ ( 𝑣  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 ) | 
						
							| 46 | 1 3 2 2 45 | cmpo | ⊢ ( 𝑟  ∈  V ,  𝑚  ∈  V  ↦  ⦋ ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) )  /  𝑣 ⦌ ( 𝑣  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 ) ) | 
						
							| 47 | 0 46 | wceq | ⊢  MndRing   =  ( 𝑟  ∈  V ,  𝑚  ∈  V  ↦  ⦋ ( 𝑟  freeLMod  ( Base ‘ 𝑚 ) )  /  𝑣 ⦌ ( 𝑣  sSet  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑣 ) ,  𝑦  ∈  ( Base ‘ 𝑣 )  ↦  ( 𝑣  Σg  ( 𝑎  ∈  ( Base ‘ 𝑚 ) ,  𝑏  ∈  ( Base ‘ 𝑚 )  ↦  ( 𝑖  ∈  ( Base ‘ 𝑚 )  ↦  if ( 𝑖  =  ( 𝑎 ( +g ‘ 𝑚 ) 𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑏 ) ) ,  ( 0g ‘ 𝑟 ) ) ) ) ) ) 〉 ) ) |