| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cmnring |  |-  MndRing | 
						
							| 1 |  | vr |  |-  r | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vm |  |-  m | 
						
							| 4 | 1 | cv |  |-  r | 
						
							| 5 |  | cfrlm |  |-  freeLMod | 
						
							| 6 |  | cbs |  |-  Base | 
						
							| 7 | 3 | cv |  |-  m | 
						
							| 8 | 7 6 | cfv |  |-  ( Base ` m ) | 
						
							| 9 | 4 8 5 | co |  |-  ( r freeLMod ( Base ` m ) ) | 
						
							| 10 |  | vv |  |-  v | 
						
							| 11 | 10 | cv |  |-  v | 
						
							| 12 |  | csts |  |-  sSet | 
						
							| 13 |  | cmulr |  |-  .r | 
						
							| 14 |  | cnx |  |-  ndx | 
						
							| 15 | 14 13 | cfv |  |-  ( .r ` ndx ) | 
						
							| 16 |  | vx |  |-  x | 
						
							| 17 | 11 6 | cfv |  |-  ( Base ` v ) | 
						
							| 18 |  | vy |  |-  y | 
						
							| 19 |  | cgsu |  |-  gsum | 
						
							| 20 |  | va |  |-  a | 
						
							| 21 |  | vb |  |-  b | 
						
							| 22 |  | vi |  |-  i | 
						
							| 23 | 22 | cv |  |-  i | 
						
							| 24 | 20 | cv |  |-  a | 
						
							| 25 |  | cplusg |  |-  +g | 
						
							| 26 | 7 25 | cfv |  |-  ( +g ` m ) | 
						
							| 27 | 21 | cv |  |-  b | 
						
							| 28 | 24 27 26 | co |  |-  ( a ( +g ` m ) b ) | 
						
							| 29 | 23 28 | wceq |  |-  i = ( a ( +g ` m ) b ) | 
						
							| 30 | 16 | cv |  |-  x | 
						
							| 31 | 24 30 | cfv |  |-  ( x ` a ) | 
						
							| 32 | 4 13 | cfv |  |-  ( .r ` r ) | 
						
							| 33 | 18 | cv |  |-  y | 
						
							| 34 | 27 33 | cfv |  |-  ( y ` b ) | 
						
							| 35 | 31 34 32 | co |  |-  ( ( x ` a ) ( .r ` r ) ( y ` b ) ) | 
						
							| 36 |  | c0g |  |-  0g | 
						
							| 37 | 4 36 | cfv |  |-  ( 0g ` r ) | 
						
							| 38 | 29 35 37 | cif |  |-  if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) | 
						
							| 39 | 22 8 38 | cmpt |  |-  ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) | 
						
							| 40 | 20 21 8 8 39 | cmpo |  |-  ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) | 
						
							| 41 | 11 40 19 | co |  |-  ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) | 
						
							| 42 | 16 18 17 17 41 | cmpo |  |-  ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) | 
						
							| 43 | 15 42 | cop |  |-  <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. | 
						
							| 44 | 11 43 12 | co |  |-  ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) | 
						
							| 45 | 10 9 44 | csb |  |-  [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) | 
						
							| 46 | 1 3 2 2 45 | cmpo |  |-  ( r e. _V , m e. _V |-> [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) ) | 
						
							| 47 | 0 46 | wceq |  |-  MndRing = ( r e. _V , m e. _V |-> [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) ) |