Step |
Hyp |
Ref |
Expression |
0 |
|
cmnring |
|- MndRing |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vm |
|- m |
4 |
1
|
cv |
|- r |
5 |
|
cfrlm |
|- freeLMod |
6 |
|
cbs |
|- Base |
7 |
3
|
cv |
|- m |
8 |
7 6
|
cfv |
|- ( Base ` m ) |
9 |
4 8 5
|
co |
|- ( r freeLMod ( Base ` m ) ) |
10 |
|
vv |
|- v |
11 |
10
|
cv |
|- v |
12 |
|
csts |
|- sSet |
13 |
|
cmulr |
|- .r |
14 |
|
cnx |
|- ndx |
15 |
14 13
|
cfv |
|- ( .r ` ndx ) |
16 |
|
vx |
|- x |
17 |
11 6
|
cfv |
|- ( Base ` v ) |
18 |
|
vy |
|- y |
19 |
|
cgsu |
|- gsum |
20 |
|
va |
|- a |
21 |
|
vb |
|- b |
22 |
|
vi |
|- i |
23 |
22
|
cv |
|- i |
24 |
20
|
cv |
|- a |
25 |
|
cplusg |
|- +g |
26 |
7 25
|
cfv |
|- ( +g ` m ) |
27 |
21
|
cv |
|- b |
28 |
24 27 26
|
co |
|- ( a ( +g ` m ) b ) |
29 |
23 28
|
wceq |
|- i = ( a ( +g ` m ) b ) |
30 |
16
|
cv |
|- x |
31 |
24 30
|
cfv |
|- ( x ` a ) |
32 |
4 13
|
cfv |
|- ( .r ` r ) |
33 |
18
|
cv |
|- y |
34 |
27 33
|
cfv |
|- ( y ` b ) |
35 |
31 34 32
|
co |
|- ( ( x ` a ) ( .r ` r ) ( y ` b ) ) |
36 |
|
c0g |
|- 0g |
37 |
4 36
|
cfv |
|- ( 0g ` r ) |
38 |
29 35 37
|
cif |
|- if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) |
39 |
22 8 38
|
cmpt |
|- ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) |
40 |
20 21 8 8 39
|
cmpo |
|- ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) |
41 |
11 40 19
|
co |
|- ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) |
42 |
16 18 17 17 41
|
cmpo |
|- ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) |
43 |
15 42
|
cop |
|- <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. |
44 |
11 43 12
|
co |
|- ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) |
45 |
10 9 44
|
csb |
|- [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) |
46 |
1 3 2 2 45
|
cmpo |
|- ( r e. _V , m e. _V |-> [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) ) |
47 |
0 46
|
wceq |
|- MndRing = ( r e. _V , m e. _V |-> [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) ) |