| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnringvald.1 |
|- F = ( R MndRing M ) |
| 2 |
|
mnringvald.2 |
|- .x. = ( .r ` R ) |
| 3 |
|
mnringvald.3 |
|- .0. = ( 0g ` R ) |
| 4 |
|
mnringvald.4 |
|- A = ( Base ` M ) |
| 5 |
|
mnringvald.5 |
|- .+ = ( +g ` M ) |
| 6 |
|
mnringvald.6 |
|- V = ( R freeLMod A ) |
| 7 |
|
mnringvald.7 |
|- B = ( Base ` V ) |
| 8 |
|
mnringvald.8 |
|- ( ph -> R e. U ) |
| 9 |
|
mnringvald.9 |
|- ( ph -> M e. W ) |
| 10 |
8
|
elexd |
|- ( ph -> R e. _V ) |
| 11 |
9
|
elexd |
|- ( ph -> M e. _V ) |
| 12 |
|
nfv |
|- F/ v ( r = R /\ m = M ) |
| 13 |
|
nfcvd |
|- ( ( r = R /\ m = M ) -> F/_ v ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) |
| 14 |
|
ovexd |
|- ( ( r = R /\ m = M ) -> ( r freeLMod ( Base ` m ) ) e. _V ) |
| 15 |
|
simpr |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> v = ( r freeLMod ( Base ` m ) ) ) |
| 16 |
|
simpll |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> r = R ) |
| 17 |
|
fveq2 |
|- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
| 18 |
17 4
|
eqtr4di |
|- ( m = M -> ( Base ` m ) = A ) |
| 19 |
18
|
ad2antlr |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( Base ` m ) = A ) |
| 20 |
16 19
|
oveq12d |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( r freeLMod ( Base ` m ) ) = ( R freeLMod A ) ) |
| 21 |
15 20
|
eqtrd |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> v = ( R freeLMod A ) ) |
| 22 |
21 6
|
eqtr4di |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> v = V ) |
| 23 |
22
|
fveq2d |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( Base ` v ) = ( Base ` V ) ) |
| 24 |
23 7
|
eqtr4di |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( Base ` v ) = B ) |
| 25 |
|
fveq2 |
|- ( m = M -> ( +g ` m ) = ( +g ` M ) ) |
| 26 |
25 5
|
eqtr4di |
|- ( m = M -> ( +g ` m ) = .+ ) |
| 27 |
26
|
oveqd |
|- ( m = M -> ( a ( +g ` m ) b ) = ( a .+ b ) ) |
| 28 |
27
|
ad2antlr |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( a ( +g ` m ) b ) = ( a .+ b ) ) |
| 29 |
28
|
eqeq2d |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( i = ( a ( +g ` m ) b ) <-> i = ( a .+ b ) ) ) |
| 30 |
|
fveq2 |
|- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
| 31 |
30 2
|
eqtr4di |
|- ( r = R -> ( .r ` r ) = .x. ) |
| 32 |
31
|
oveqd |
|- ( r = R -> ( ( x ` a ) ( .r ` r ) ( y ` b ) ) = ( ( x ` a ) .x. ( y ` b ) ) ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( ( x ` a ) ( .r ` r ) ( y ` b ) ) = ( ( x ` a ) .x. ( y ` b ) ) ) |
| 34 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
| 35 |
34 3
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
| 36 |
35
|
ad2antrr |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( 0g ` r ) = .0. ) |
| 37 |
29 33 36
|
ifbieq12d |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) = if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) |
| 38 |
19 37
|
mpteq12dv |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) = ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) |
| 39 |
19 19 38
|
mpoeq123dv |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) = ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) |
| 40 |
22 39
|
oveq12d |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) = ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) |
| 41 |
24 24 40
|
mpoeq123dv |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) = ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) ) |
| 42 |
41
|
opeq2d |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. = <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) |
| 43 |
22 42
|
oveq12d |
|- ( ( ( r = R /\ m = M ) /\ v = ( r freeLMod ( Base ` m ) ) ) -> ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) |
| 44 |
12 13 14 43
|
csbiedf |
|- ( ( r = R /\ m = M ) -> [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) |
| 45 |
|
df-mnring |
|- MndRing = ( r e. _V , m e. _V |-> [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) ) |
| 46 |
|
ovex |
|- ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) e. _V |
| 47 |
44 45 46
|
ovmpoa |
|- ( ( R e. _V /\ M e. _V ) -> ( R MndRing M ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) |
| 48 |
10 11 47
|
syl2anc |
|- ( ph -> ( R MndRing M ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) |
| 49 |
1 48
|
eqtrid |
|- ( ph -> F = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) |