Metamath Proof Explorer


Theorem mnringnmulrd

Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024) (Revised by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringnmulrd.1
|- F = ( R MndRing M )
mnringnmulrd.2
|- E = Slot ( E ` ndx )
mnringnmulrd.4
|- ( E ` ndx ) =/= ( .r ` ndx )
mnringnmulrd.5
|- A = ( Base ` M )
mnringnmulrd.6
|- V = ( R freeLMod A )
mnringnmulrd.7
|- ( ph -> R e. U )
mnringnmulrd.8
|- ( ph -> M e. W )
Assertion mnringnmulrd
|- ( ph -> ( E ` V ) = ( E ` F ) )

Proof

Step Hyp Ref Expression
1 mnringnmulrd.1
 |-  F = ( R MndRing M )
2 mnringnmulrd.2
 |-  E = Slot ( E ` ndx )
3 mnringnmulrd.4
 |-  ( E ` ndx ) =/= ( .r ` ndx )
4 mnringnmulrd.5
 |-  A = ( Base ` M )
5 mnringnmulrd.6
 |-  V = ( R freeLMod A )
6 mnringnmulrd.7
 |-  ( ph -> R e. U )
7 mnringnmulrd.8
 |-  ( ph -> M e. W )
8 2 3 setsnid
 |-  ( E ` V ) = ( E ` ( V sSet <. ( .r ` ndx ) , ( x e. ( Base ` V ) , y e. ( Base ` V ) |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a ( +g ` M ) b ) , ( ( x ` a ) ( .r ` R ) ( y ` b ) ) , ( 0g ` R ) ) ) ) ) ) >. ) )
9 eqid
 |-  ( .r ` R ) = ( .r ` R )
10 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
11 eqid
 |-  ( +g ` M ) = ( +g ` M )
12 eqid
 |-  ( Base ` V ) = ( Base ` V )
13 1 9 10 4 11 5 12 6 7 mnringvald
 |-  ( ph -> F = ( V sSet <. ( .r ` ndx ) , ( x e. ( Base ` V ) , y e. ( Base ` V ) |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a ( +g ` M ) b ) , ( ( x ` a ) ( .r ` R ) ( y ` b ) ) , ( 0g ` R ) ) ) ) ) ) >. ) )
14 13 fveq2d
 |-  ( ph -> ( E ` F ) = ( E ` ( V sSet <. ( .r ` ndx ) , ( x e. ( Base ` V ) , y e. ( Base ` V ) |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a ( +g ` M ) b ) , ( ( x ` a ) ( .r ` R ) ( y ` b ) ) , ( 0g ` R ) ) ) ) ) ) >. ) ) )
15 8 14 eqtr4id
 |-  ( ph -> ( E ` V ) = ( E ` F ) )