| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnringnmulrd.1 |
|- F = ( R MndRing M ) |
| 2 |
|
mnringnmulrd.2 |
|- E = Slot ( E ` ndx ) |
| 3 |
|
mnringnmulrd.4 |
|- ( E ` ndx ) =/= ( .r ` ndx ) |
| 4 |
|
mnringnmulrd.5 |
|- A = ( Base ` M ) |
| 5 |
|
mnringnmulrd.6 |
|- V = ( R freeLMod A ) |
| 6 |
|
mnringnmulrd.7 |
|- ( ph -> R e. U ) |
| 7 |
|
mnringnmulrd.8 |
|- ( ph -> M e. W ) |
| 8 |
2 3
|
setsnid |
|- ( E ` V ) = ( E ` ( V sSet <. ( .r ` ndx ) , ( x e. ( Base ` V ) , y e. ( Base ` V ) |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a ( +g ` M ) b ) , ( ( x ` a ) ( .r ` R ) ( y ` b ) ) , ( 0g ` R ) ) ) ) ) ) >. ) ) |
| 9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 10 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 11 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 12 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
| 13 |
1 9 10 4 11 5 12 6 7
|
mnringvald |
|- ( ph -> F = ( V sSet <. ( .r ` ndx ) , ( x e. ( Base ` V ) , y e. ( Base ` V ) |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a ( +g ` M ) b ) , ( ( x ` a ) ( .r ` R ) ( y ` b ) ) , ( 0g ` R ) ) ) ) ) ) >. ) ) |
| 14 |
13
|
fveq2d |
|- ( ph -> ( E ` F ) = ( E ` ( V sSet <. ( .r ` ndx ) , ( x e. ( Base ` V ) , y e. ( Base ` V ) |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a ( +g ` M ) b ) , ( ( x ` a ) ( .r ` R ) ( y ` b ) ) , ( 0g ` R ) ) ) ) ) ) >. ) ) ) |
| 15 |
8 14
|
eqtr4id |
|- ( ph -> ( E ` V ) = ( E ` F ) ) |