| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringnmulrdOLD.1 |  |-  F = ( R MndRing M ) | 
						
							| 2 |  | mnringnmulrdOLD.2 |  |-  E = Slot N | 
						
							| 3 |  | mnringnmulrdOLD.3 |  |-  N e. NN | 
						
							| 4 |  | mnringnmulrdOLD.4 |  |-  N =/= ( .r ` ndx ) | 
						
							| 5 |  | mnringnmulrdOLD.5 |  |-  A = ( Base ` M ) | 
						
							| 6 |  | mnringnmulrdOLD.6 |  |-  V = ( R freeLMod A ) | 
						
							| 7 |  | mnringnmulrdOLD.7 |  |-  ( ph -> R e. U ) | 
						
							| 8 |  | mnringnmulrdOLD.8 |  |-  ( ph -> M e. W ) | 
						
							| 9 | 2 3 | ndxid |  |-  E = Slot ( E ` ndx ) | 
						
							| 10 | 2 3 | ndxarg |  |-  ( E ` ndx ) = N | 
						
							| 11 | 10 4 | eqnetri |  |-  ( E ` ndx ) =/= ( .r ` ndx ) | 
						
							| 12 | 9 11 | setsnid |  |-  ( E ` V ) = ( E ` ( V sSet <. ( .r ` ndx ) , ( x e. ( Base ` V ) , y e. ( Base ` V ) |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a ( +g ` M ) b ) , ( ( x ` a ) ( .r ` R ) ( y ` b ) ) , ( 0g ` R ) ) ) ) ) ) >. ) ) | 
						
							| 13 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 15 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 16 |  | eqid |  |-  ( Base ` V ) = ( Base ` V ) | 
						
							| 17 | 1 13 14 5 15 6 16 7 8 | mnringvald |  |-  ( ph -> F = ( V sSet <. ( .r ` ndx ) , ( x e. ( Base ` V ) , y e. ( Base ` V ) |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a ( +g ` M ) b ) , ( ( x ` a ) ( .r ` R ) ( y ` b ) ) , ( 0g ` R ) ) ) ) ) ) >. ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ph -> ( E ` F ) = ( E ` ( V sSet <. ( .r ` ndx ) , ( x e. ( Base ` V ) , y e. ( Base ` V ) |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a ( +g ` M ) b ) , ( ( x ` a ) ( .r ` R ) ( y ` b ) ) , ( 0g ` R ) ) ) ) ) ) >. ) ) ) | 
						
							| 19 | 12 18 | eqtr4id |  |-  ( ph -> ( E ` V ) = ( E ` F ) ) |