Metamath Proof Explorer


Theorem mnringnmulrd

Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024) (Revised by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringnmulrd.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringnmulrd.2 𝐸 = Slot ( 𝐸 ‘ ndx )
mnringnmulrd.4 ( 𝐸 ‘ ndx ) ≠ ( .r ‘ ndx )
mnringnmulrd.5 𝐴 = ( Base ‘ 𝑀 )
mnringnmulrd.6 𝑉 = ( 𝑅 freeLMod 𝐴 )
mnringnmulrd.7 ( 𝜑𝑅𝑈 )
mnringnmulrd.8 ( 𝜑𝑀𝑊 )
Assertion mnringnmulrd ( 𝜑 → ( 𝐸𝑉 ) = ( 𝐸𝐹 ) )

Proof

Step Hyp Ref Expression
1 mnringnmulrd.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnringnmulrd.2 𝐸 = Slot ( 𝐸 ‘ ndx )
3 mnringnmulrd.4 ( 𝐸 ‘ ndx ) ≠ ( .r ‘ ndx )
4 mnringnmulrd.5 𝐴 = ( Base ‘ 𝑀 )
5 mnringnmulrd.6 𝑉 = ( 𝑅 freeLMod 𝐴 )
6 mnringnmulrd.7 ( 𝜑𝑅𝑈 )
7 mnringnmulrd.8 ( 𝜑𝑀𝑊 )
8 2 3 setsnid ( 𝐸𝑉 ) = ( 𝐸 ‘ ( 𝑉 sSet ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑉 ) , 𝑦 ∈ ( Base ‘ 𝑉 ) ↦ ( 𝑉 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g𝑀 ) 𝑏 ) , ( ( 𝑥𝑎 ) ( .r𝑅 ) ( 𝑦𝑏 ) ) , ( 0g𝑅 ) ) ) ) ) ) ⟩ ) )
9 eqid ( .r𝑅 ) = ( .r𝑅 )
10 eqid ( 0g𝑅 ) = ( 0g𝑅 )
11 eqid ( +g𝑀 ) = ( +g𝑀 )
12 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
13 1 9 10 4 11 5 12 6 7 mnringvald ( 𝜑𝐹 = ( 𝑉 sSet ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑉 ) , 𝑦 ∈ ( Base ‘ 𝑉 ) ↦ ( 𝑉 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g𝑀 ) 𝑏 ) , ( ( 𝑥𝑎 ) ( .r𝑅 ) ( 𝑦𝑏 ) ) , ( 0g𝑅 ) ) ) ) ) ) ⟩ ) )
14 13 fveq2d ( 𝜑 → ( 𝐸𝐹 ) = ( 𝐸 ‘ ( 𝑉 sSet ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑉 ) , 𝑦 ∈ ( Base ‘ 𝑉 ) ↦ ( 𝑉 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g𝑀 ) 𝑏 ) , ( ( 𝑥𝑎 ) ( .r𝑅 ) ( 𝑦𝑏 ) ) , ( 0g𝑅 ) ) ) ) ) ) ⟩ ) ) )
15 8 14 eqtr4id ( 𝜑 → ( 𝐸𝑉 ) = ( 𝐸𝐹 ) )