Step |
Hyp |
Ref |
Expression |
1 |
|
mnringvald.1 |
|
2 |
|
mnringvald.2 |
|
3 |
|
mnringvald.3 |
|
4 |
|
mnringvald.4 |
|
5 |
|
mnringvald.5 |
|
6 |
|
mnringvald.6 |
|
7 |
|
mnringvald.7 |
|
8 |
|
mnringvald.8 |
|
9 |
|
mnringvald.9 |
|
10 |
8
|
elexd |
|
11 |
9
|
elexd |
|
12 |
|
nfv |
|
13 |
|
nfcvd |
|
14 |
|
ovexd |
|
15 |
|
simpr |
|
16 |
|
simpll |
|
17 |
|
fveq2 |
|
18 |
17 4
|
eqtr4di |
|
19 |
18
|
ad2antlr |
|
20 |
16 19
|
oveq12d |
|
21 |
15 20
|
eqtrd |
|
22 |
21 6
|
eqtr4di |
|
23 |
22
|
fveq2d |
|
24 |
23 7
|
eqtr4di |
|
25 |
|
fveq2 |
|
26 |
25 5
|
eqtr4di |
|
27 |
26
|
oveqd |
|
28 |
27
|
ad2antlr |
|
29 |
28
|
eqeq2d |
|
30 |
|
fveq2 |
|
31 |
30 2
|
eqtr4di |
|
32 |
31
|
oveqd |
|
33 |
32
|
ad2antrr |
|
34 |
|
fveq2 |
|
35 |
34 3
|
eqtr4di |
|
36 |
35
|
ad2antrr |
|
37 |
29 33 36
|
ifbieq12d |
|
38 |
19 37
|
mpteq12dv |
|
39 |
19 19 38
|
mpoeq123dv |
|
40 |
22 39
|
oveq12d |
|
41 |
24 24 40
|
mpoeq123dv |
|
42 |
41
|
opeq2d |
|
43 |
22 42
|
oveq12d |
|
44 |
12 13 14 43
|
csbiedf |
|
45 |
|
df-mnring |
|
46 |
|
ovex |
|
47 |
44 45 46
|
ovmpoa |
|
48 |
10 11 47
|
syl2anc |
|
49 |
1 48
|
eqtrid |
|