Metamath Proof Explorer


Definition df-mnring

Description: Define the monoid ring function. This takes a monoid M and a ring R and produces a free left module over R with a product extending the monoid function on M . (Contributed by Rohan Ridenour, 13-May-2024)

Ref Expression
Assertion df-mnring MndRing = r V , m V r freeLMod Base m / v v sSet ndx x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmnring class MndRing
1 vr setvar r
2 cvv class V
3 vm setvar m
4 1 cv setvar r
5 cfrlm class freeLMod
6 cbs class Base
7 3 cv setvar m
8 7 6 cfv class Base m
9 4 8 5 co class r freeLMod Base m
10 vv setvar v
11 10 cv setvar v
12 csts class sSet
13 cmulr class 𝑟
14 cnx class ndx
15 14 13 cfv class ndx
16 vx setvar x
17 11 6 cfv class Base v
18 vy setvar y
19 cgsu class Σ𝑔
20 va setvar a
21 vb setvar b
22 vi setvar i
23 22 cv setvar i
24 20 cv setvar a
25 cplusg class + 𝑔
26 7 25 cfv class + m
27 21 cv setvar b
28 24 27 26 co class a + m b
29 23 28 wceq wff i = a + m b
30 16 cv setvar x
31 24 30 cfv class x a
32 4 13 cfv class r
33 18 cv setvar y
34 27 33 cfv class y b
35 31 34 32 co class x a r y b
36 c0g class 0 𝑔
37 4 36 cfv class 0 r
38 29 35 37 cif class if i = a + m b x a r y b 0 r
39 22 8 38 cmpt class i Base m if i = a + m b x a r y b 0 r
40 20 21 8 8 39 cmpo class a Base m , b Base m i Base m if i = a + m b x a r y b 0 r
41 11 40 19 co class v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r
42 16 18 17 17 41 cmpo class x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r
43 15 42 cop class ndx x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r
44 11 43 12 co class v sSet ndx x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r
45 10 9 44 csb class r freeLMod Base m / v v sSet ndx x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r
46 1 3 2 2 45 cmpo class r V , m V r freeLMod Base m / v v sSet ndx x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r
47 0 46 wceq wff MndRing = r V , m V r freeLMod Base m / v v sSet ndx x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r