Description: The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnringaddgd.1 | |- F = ( R MndRing M ) |
|
mnringaddgd.2 | |- A = ( Base ` M ) |
||
mnringaddgd.3 | |- V = ( R freeLMod A ) |
||
mnringaddgd.4 | |- ( ph -> R e. U ) |
||
mnringaddgd.5 | |- ( ph -> M e. W ) |
||
Assertion | mnringaddgd | |- ( ph -> ( +g ` V ) = ( +g ` F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringaddgd.1 | |- F = ( R MndRing M ) |
|
2 | mnringaddgd.2 | |- A = ( Base ` M ) |
|
3 | mnringaddgd.3 | |- V = ( R freeLMod A ) |
|
4 | mnringaddgd.4 | |- ( ph -> R e. U ) |
|
5 | mnringaddgd.5 | |- ( ph -> M e. W ) |
|
6 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
7 | plusgndxnmulrndx | |- ( +g ` ndx ) =/= ( .r ` ndx ) |
|
8 | 1 6 7 2 3 4 5 | mnringnmulrd | |- ( ph -> ( +g ` V ) = ( +g ` F ) ) |