Description: The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mnringaddgd.1 | |- F = ( R MndRing M ) |
|
| mnringaddgd.2 | |- A = ( Base ` M ) |
||
| mnringaddgd.3 | |- V = ( R freeLMod A ) |
||
| mnringaddgd.4 | |- ( ph -> R e. U ) |
||
| mnringaddgd.5 | |- ( ph -> M e. W ) |
||
| Assertion | mnringaddgd | |- ( ph -> ( +g ` V ) = ( +g ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnringaddgd.1 | |- F = ( R MndRing M ) |
|
| 2 | mnringaddgd.2 | |- A = ( Base ` M ) |
|
| 3 | mnringaddgd.3 | |- V = ( R freeLMod A ) |
|
| 4 | mnringaddgd.4 | |- ( ph -> R e. U ) |
|
| 5 | mnringaddgd.5 | |- ( ph -> M e. W ) |
|
| 6 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 7 | plusgndxnmulrndx | |- ( +g ` ndx ) =/= ( .r ` ndx ) |
|
| 8 | 1 6 7 2 3 4 5 | mnringnmulrd | |- ( ph -> ( +g ` V ) = ( +g ` F ) ) |