Metamath Proof Explorer


Theorem mnringaddgd

Description: The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringaddgd.1
|- F = ( R MndRing M )
mnringaddgd.2
|- A = ( Base ` M )
mnringaddgd.3
|- V = ( R freeLMod A )
mnringaddgd.4
|- ( ph -> R e. U )
mnringaddgd.5
|- ( ph -> M e. W )
Assertion mnringaddgd
|- ( ph -> ( +g ` V ) = ( +g ` F ) )

Proof

Step Hyp Ref Expression
1 mnringaddgd.1
 |-  F = ( R MndRing M )
2 mnringaddgd.2
 |-  A = ( Base ` M )
3 mnringaddgd.3
 |-  V = ( R freeLMod A )
4 mnringaddgd.4
 |-  ( ph -> R e. U )
5 mnringaddgd.5
 |-  ( ph -> M e. W )
6 plusgid
 |-  +g = Slot ( +g ` ndx )
7 plusgndxnmulrndx
 |-  ( +g ` ndx ) =/= ( .r ` ndx )
8 1 6 7 2 3 4 5 mnringnmulrd
 |-  ( ph -> ( +g ` V ) = ( +g ` F ) )