Metamath Proof Explorer


Theorem mnringaddgdOLD

Description: Obsolete version of mnringaddgd as of 1-Nov-2024. The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses mnringaddgd.1
|- F = ( R MndRing M )
mnringaddgd.2
|- A = ( Base ` M )
mnringaddgd.3
|- V = ( R freeLMod A )
mnringaddgd.4
|- ( ph -> R e. U )
mnringaddgd.5
|- ( ph -> M e. W )
Assertion mnringaddgdOLD
|- ( ph -> ( +g ` V ) = ( +g ` F ) )

Proof

Step Hyp Ref Expression
1 mnringaddgd.1
 |-  F = ( R MndRing M )
2 mnringaddgd.2
 |-  A = ( Base ` M )
3 mnringaddgd.3
 |-  V = ( R freeLMod A )
4 mnringaddgd.4
 |-  ( ph -> R e. U )
5 mnringaddgd.5
 |-  ( ph -> M e. W )
6 df-plusg
 |-  +g = Slot 2
7 2nn
 |-  2 e. NN
8 2re
 |-  2 e. RR
9 2lt3
 |-  2 < 3
10 8 9 ltneii
 |-  2 =/= 3
11 mulrndx
 |-  ( .r ` ndx ) = 3
12 10 11 neeqtrri
 |-  2 =/= ( .r ` ndx )
13 1 6 7 12 2 3 4 5 mnringnmulrdOLD
 |-  ( ph -> ( +g ` V ) = ( +g ` F ) )