Metamath Proof Explorer


Theorem mnring0gd

Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnring0gd.1
|- F = ( R MndRing M )
mnring0gd.2
|- A = ( Base ` M )
mnring0gd.3
|- V = ( R freeLMod A )
mnring0gd.4
|- ( ph -> R e. U )
mnring0gd.5
|- ( ph -> M e. W )
Assertion mnring0gd
|- ( ph -> ( 0g ` V ) = ( 0g ` F ) )

Proof

Step Hyp Ref Expression
1 mnring0gd.1
 |-  F = ( R MndRing M )
2 mnring0gd.2
 |-  A = ( Base ` M )
3 mnring0gd.3
 |-  V = ( R freeLMod A )
4 mnring0gd.4
 |-  ( ph -> R e. U )
5 mnring0gd.5
 |-  ( ph -> M e. W )
6 eqidd
 |-  ( ph -> ( Base ` V ) = ( Base ` V ) )
7 eqid
 |-  ( Base ` V ) = ( Base ` V )
8 1 2 3 7 4 5 mnringbased
 |-  ( ph -> ( Base ` V ) = ( Base ` F ) )
9 1 2 3 4 5 mnringaddgd
 |-  ( ph -> ( +g ` V ) = ( +g ` F ) )
10 9 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` V ) /\ y e. ( Base ` V ) ) ) -> ( x ( +g ` V ) y ) = ( x ( +g ` F ) y ) )
11 6 8 10 grpidpropd
 |-  ( ph -> ( 0g ` V ) = ( 0g ` F ) )