| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnring0gd.1 |  |-  F = ( R MndRing M ) | 
						
							| 2 |  | mnring0gd.2 |  |-  A = ( Base ` M ) | 
						
							| 3 |  | mnring0gd.3 |  |-  V = ( R freeLMod A ) | 
						
							| 4 |  | mnring0gd.4 |  |-  ( ph -> R e. U ) | 
						
							| 5 |  | mnring0gd.5 |  |-  ( ph -> M e. W ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> ( Base ` V ) = ( Base ` V ) ) | 
						
							| 7 |  | eqid |  |-  ( Base ` V ) = ( Base ` V ) | 
						
							| 8 | 1 2 3 7 4 5 | mnringbased |  |-  ( ph -> ( Base ` V ) = ( Base ` F ) ) | 
						
							| 9 | 1 2 3 4 5 | mnringaddgd |  |-  ( ph -> ( +g ` V ) = ( +g ` F ) ) | 
						
							| 10 | 9 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` V ) /\ y e. ( Base ` V ) ) ) -> ( x ( +g ` V ) y ) = ( x ( +g ` F ) y ) ) | 
						
							| 11 | 6 8 10 | grpidpropd |  |-  ( ph -> ( 0g ` V ) = ( 0g ` F ) ) |