| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnring0gd.1 |
|- F = ( R MndRing M ) |
| 2 |
|
mnring0gd.2 |
|- A = ( Base ` M ) |
| 3 |
|
mnring0gd.3 |
|- V = ( R freeLMod A ) |
| 4 |
|
mnring0gd.4 |
|- ( ph -> R e. U ) |
| 5 |
|
mnring0gd.5 |
|- ( ph -> M e. W ) |
| 6 |
|
eqidd |
|- ( ph -> ( Base ` V ) = ( Base ` V ) ) |
| 7 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
| 8 |
1 2 3 7 4 5
|
mnringbased |
|- ( ph -> ( Base ` V ) = ( Base ` F ) ) |
| 9 |
1 2 3 4 5
|
mnringaddgd |
|- ( ph -> ( +g ` V ) = ( +g ` F ) ) |
| 10 |
9
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` V ) /\ y e. ( Base ` V ) ) ) -> ( x ( +g ` V ) y ) = ( x ( +g ` F ) y ) ) |
| 11 |
6 8 10
|
grpidpropd |
|- ( ph -> ( 0g ` V ) = ( 0g ` F ) ) |