Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnring0g2d.1 | |- F = ( R MndRing M ) |
|
mnring0g2d.2 | |- .0. = ( 0g ` R ) |
||
mnring0g2d.3 | |- A = ( Base ` M ) |
||
mnring0g2d.4 | |- ( ph -> R e. Ring ) |
||
mnring0g2d.5 | |- ( ph -> M e. W ) |
||
Assertion | mnring0g2d | |- ( ph -> ( A X. { .0. } ) = ( 0g ` F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnring0g2d.1 | |- F = ( R MndRing M ) |
|
2 | mnring0g2d.2 | |- .0. = ( 0g ` R ) |
|
3 | mnring0g2d.3 | |- A = ( Base ` M ) |
|
4 | mnring0g2d.4 | |- ( ph -> R e. Ring ) |
|
5 | mnring0g2d.5 | |- ( ph -> M e. W ) |
|
6 | 3 | fvexi | |- A e. _V |
7 | eqid | |- ( R freeLMod A ) = ( R freeLMod A ) |
|
8 | 7 2 | frlm0 | |- ( ( R e. Ring /\ A e. _V ) -> ( A X. { .0. } ) = ( 0g ` ( R freeLMod A ) ) ) |
9 | 4 6 8 | sylancl | |- ( ph -> ( A X. { .0. } ) = ( 0g ` ( R freeLMod A ) ) ) |
10 | 1 3 7 4 5 | mnring0gd | |- ( ph -> ( 0g ` ( R freeLMod A ) ) = ( 0g ` F ) ) |
11 | 9 10 | eqtrd | |- ( ph -> ( A X. { .0. } ) = ( 0g ` F ) ) |