Metamath Proof Explorer


Theorem mnring0g2d

Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnring0g2d.1
|- F = ( R MndRing M )
mnring0g2d.2
|- .0. = ( 0g ` R )
mnring0g2d.3
|- A = ( Base ` M )
mnring0g2d.4
|- ( ph -> R e. Ring )
mnring0g2d.5
|- ( ph -> M e. W )
Assertion mnring0g2d
|- ( ph -> ( A X. { .0. } ) = ( 0g ` F ) )

Proof

Step Hyp Ref Expression
1 mnring0g2d.1
 |-  F = ( R MndRing M )
2 mnring0g2d.2
 |-  .0. = ( 0g ` R )
3 mnring0g2d.3
 |-  A = ( Base ` M )
4 mnring0g2d.4
 |-  ( ph -> R e. Ring )
5 mnring0g2d.5
 |-  ( ph -> M e. W )
6 3 fvexi
 |-  A e. _V
7 eqid
 |-  ( R freeLMod A ) = ( R freeLMod A )
8 7 2 frlm0
 |-  ( ( R e. Ring /\ A e. _V ) -> ( A X. { .0. } ) = ( 0g ` ( R freeLMod A ) ) )
9 4 6 8 sylancl
 |-  ( ph -> ( A X. { .0. } ) = ( 0g ` ( R freeLMod A ) ) )
10 1 3 7 4 5 mnring0gd
 |-  ( ph -> ( 0g ` ( R freeLMod A ) ) = ( 0g ` F ) )
11 9 10 eqtrd
 |-  ( ph -> ( A X. { .0. } ) = ( 0g ` F ) )