Metamath Proof Explorer


Theorem mnring0g2d

Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnring0g2d.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnring0g2d.2 0˙=0R
mnring0g2d.3 A=BaseM
mnring0g2d.4 φRRing
mnring0g2d.5 φMW
Assertion mnring0g2d φA×0˙=0F

Proof

Step Hyp Ref Expression
1 mnring0g2d.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnring0g2d.2 0˙=0R
3 mnring0g2d.3 A=BaseM
4 mnring0g2d.4 φRRing
5 mnring0g2d.5 φMW
6 3 fvexi AV
7 eqid RfreeLModA=RfreeLModA
8 7 2 frlm0 RRingAVA×0˙=0RfreeLModA
9 4 6 8 sylancl φA×0˙=0RfreeLModA
10 1 3 7 4 5 mnring0gd φ0RfreeLModA=0F
11 9 10 eqtrd φA×0˙=0F