Metamath Proof Explorer


Theorem mnring0gd

Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnring0gd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnring0gd.2 A = Base M
mnring0gd.3 V = R freeLMod A
mnring0gd.4 φ R U
mnring0gd.5 φ M W
Assertion mnring0gd φ 0 V = 0 F

Proof

Step Hyp Ref Expression
1 mnring0gd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnring0gd.2 A = Base M
3 mnring0gd.3 V = R freeLMod A
4 mnring0gd.4 φ R U
5 mnring0gd.5 φ M W
6 eqidd φ Base V = Base V
7 eqid Base V = Base V
8 1 2 3 7 4 5 mnringbased φ Base V = Base F
9 1 2 3 4 5 mnringaddgd φ + V = + F
10 9 oveqdr φ x Base V y Base V x + V y = x + F y
11 6 8 10 grpidpropd φ 0 V = 0 F