Metamath Proof Explorer
Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)
|
|
Ref |
Expression |
|
Hypotheses |
mnring0gd.1 |
|
|
|
mnring0gd.2 |
|
|
|
mnring0gd.3 |
|
|
|
mnring0gd.4 |
|
|
|
mnring0gd.5 |
|
|
Assertion |
mnring0gd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnring0gd.1 |
|
| 2 |
|
mnring0gd.2 |
|
| 3 |
|
mnring0gd.3 |
|
| 4 |
|
mnring0gd.4 |
|
| 5 |
|
mnring0gd.5 |
|
| 6 |
|
eqidd |
|
| 7 |
|
eqid |
|
| 8 |
1 2 3 7 4 5
|
mnringbased |
|
| 9 |
1 2 3 4 5
|
mnringaddgd |
|
| 10 |
9
|
oveqdr |
|
| 11 |
6 8 10
|
grpidpropd |
|