Metamath Proof Explorer


Theorem mnring0gd

Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnring0gd.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnring0gd.2 𝐴 = ( Base ‘ 𝑀 )
mnring0gd.3 𝑉 = ( 𝑅 freeLMod 𝐴 )
mnring0gd.4 ( 𝜑𝑅𝑈 )
mnring0gd.5 ( 𝜑𝑀𝑊 )
Assertion mnring0gd ( 𝜑 → ( 0g𝑉 ) = ( 0g𝐹 ) )

Proof

Step Hyp Ref Expression
1 mnring0gd.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnring0gd.2 𝐴 = ( Base ‘ 𝑀 )
3 mnring0gd.3 𝑉 = ( 𝑅 freeLMod 𝐴 )
4 mnring0gd.4 ( 𝜑𝑅𝑈 )
5 mnring0gd.5 ( 𝜑𝑀𝑊 )
6 eqidd ( 𝜑 → ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) )
7 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
8 1 2 3 7 4 5 mnringbased ( 𝜑 → ( Base ‘ 𝑉 ) = ( Base ‘ 𝐹 ) )
9 1 2 3 4 5 mnringaddgd ( 𝜑 → ( +g𝑉 ) = ( +g𝐹 ) )
10 9 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ 𝑦 ∈ ( Base ‘ 𝑉 ) ) ) → ( 𝑥 ( +g𝑉 ) 𝑦 ) = ( 𝑥 ( +g𝐹 ) 𝑦 ) )
11 6 8 10 grpidpropd ( 𝜑 → ( 0g𝑉 ) = ( 0g𝐹 ) )