Step |
Hyp |
Ref |
Expression |
1 |
|
mnring0gd.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
2 |
|
mnring0gd.2 |
⊢ 𝐴 = ( Base ‘ 𝑀 ) |
3 |
|
mnring0gd.3 |
⊢ 𝑉 = ( 𝑅 freeLMod 𝐴 ) |
4 |
|
mnring0gd.4 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
5 |
|
mnring0gd.5 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
8 |
1 2 3 7 4 5
|
mnringbased |
⊢ ( 𝜑 → ( Base ‘ 𝑉 ) = ( Base ‘ 𝐹 ) ) |
9 |
1 2 3 4 5
|
mnringaddgd |
⊢ ( 𝜑 → ( +g ‘ 𝑉 ) = ( +g ‘ 𝐹 ) ) |
10 |
9
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ 𝑦 ∈ ( Base ‘ 𝑉 ) ) ) → ( 𝑥 ( +g ‘ 𝑉 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) |
11 |
6 8 10
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝑉 ) = ( 0g ‘ 𝐹 ) ) |