| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnring0gd.1 | ⊢ 𝐹  =  ( 𝑅  MndRing  𝑀 ) | 
						
							| 2 |  | mnring0gd.2 | ⊢ 𝐴  =  ( Base ‘ 𝑀 ) | 
						
							| 3 |  | mnring0gd.3 | ⊢ 𝑉  =  ( 𝑅  freeLMod  𝐴 ) | 
						
							| 4 |  | mnring0gd.4 | ⊢ ( 𝜑  →  𝑅  ∈  𝑈 ) | 
						
							| 5 |  | mnring0gd.5 | ⊢ ( 𝜑  →  𝑀  ∈  𝑊 ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑉 )  =  ( Base ‘ 𝑉 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑉 )  =  ( Base ‘ 𝑉 ) | 
						
							| 8 | 1 2 3 7 4 5 | mnringbased | ⊢ ( 𝜑  →  ( Base ‘ 𝑉 )  =  ( Base ‘ 𝐹 ) ) | 
						
							| 9 | 1 2 3 4 5 | mnringaddgd | ⊢ ( 𝜑  →  ( +g ‘ 𝑉 )  =  ( +g ‘ 𝐹 ) ) | 
						
							| 10 | 9 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑉 )  ∧  𝑦  ∈  ( Base ‘ 𝑉 ) ) )  →  ( 𝑥 ( +g ‘ 𝑉 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) | 
						
							| 11 | 6 8 10 | grpidpropd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑉 )  =  ( 0g ‘ 𝐹 ) ) |