Metamath Proof Explorer


Theorem mnring0g2d

Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnring0g2d.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnring0g2d.2 0 = ( 0g𝑅 )
mnring0g2d.3 𝐴 = ( Base ‘ 𝑀 )
mnring0g2d.4 ( 𝜑𝑅 ∈ Ring )
mnring0g2d.5 ( 𝜑𝑀𝑊 )
Assertion mnring0g2d ( 𝜑 → ( 𝐴 × { 0 } ) = ( 0g𝐹 ) )

Proof

Step Hyp Ref Expression
1 mnring0g2d.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnring0g2d.2 0 = ( 0g𝑅 )
3 mnring0g2d.3 𝐴 = ( Base ‘ 𝑀 )
4 mnring0g2d.4 ( 𝜑𝑅 ∈ Ring )
5 mnring0g2d.5 ( 𝜑𝑀𝑊 )
6 3 fvexi 𝐴 ∈ V
7 eqid ( 𝑅 freeLMod 𝐴 ) = ( 𝑅 freeLMod 𝐴 )
8 7 2 frlm0 ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ V ) → ( 𝐴 × { 0 } ) = ( 0g ‘ ( 𝑅 freeLMod 𝐴 ) ) )
9 4 6 8 sylancl ( 𝜑 → ( 𝐴 × { 0 } ) = ( 0g ‘ ( 𝑅 freeLMod 𝐴 ) ) )
10 1 3 7 4 5 mnring0gd ( 𝜑 → ( 0g ‘ ( 𝑅 freeLMod 𝐴 ) ) = ( 0g𝐹 ) )
11 9 10 eqtrd ( 𝜑 → ( 𝐴 × { 0 } ) = ( 0g𝐹 ) )