Step |
Hyp |
Ref |
Expression |
1 |
|
mnring0g2d.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
2 |
|
mnring0g2d.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
mnring0g2d.3 |
⊢ 𝐴 = ( Base ‘ 𝑀 ) |
4 |
|
mnring0g2d.4 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
mnring0g2d.5 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
6 |
3
|
fvexi |
⊢ 𝐴 ∈ V |
7 |
|
eqid |
⊢ ( 𝑅 freeLMod 𝐴 ) = ( 𝑅 freeLMod 𝐴 ) |
8 |
7 2
|
frlm0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ V ) → ( 𝐴 × { 0 } ) = ( 0g ‘ ( 𝑅 freeLMod 𝐴 ) ) ) |
9 |
4 6 8
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 × { 0 } ) = ( 0g ‘ ( 𝑅 freeLMod 𝐴 ) ) ) |
10 |
1 3 7 4 5
|
mnring0gd |
⊢ ( 𝜑 → ( 0g ‘ ( 𝑅 freeLMod 𝐴 ) ) = ( 0g ‘ 𝐹 ) ) |
11 |
9 10
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 × { 0 } ) = ( 0g ‘ 𝐹 ) ) |