| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnring0g2d.1 | ⊢ 𝐹  =  ( 𝑅  MndRing  𝑀 ) | 
						
							| 2 |  | mnring0g2d.2 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | mnring0g2d.3 | ⊢ 𝐴  =  ( Base ‘ 𝑀 ) | 
						
							| 4 |  | mnring0g2d.4 | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | mnring0g2d.5 | ⊢ ( 𝜑  →  𝑀  ∈  𝑊 ) | 
						
							| 6 | 3 | fvexi | ⊢ 𝐴  ∈  V | 
						
							| 7 |  | eqid | ⊢ ( 𝑅  freeLMod  𝐴 )  =  ( 𝑅  freeLMod  𝐴 ) | 
						
							| 8 | 7 2 | frlm0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐴  ∈  V )  →  ( 𝐴  ×  {  0  } )  =  ( 0g ‘ ( 𝑅  freeLMod  𝐴 ) ) ) | 
						
							| 9 | 4 6 8 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ×  {  0  } )  =  ( 0g ‘ ( 𝑅  freeLMod  𝐴 ) ) ) | 
						
							| 10 | 1 3 7 4 5 | mnring0gd | ⊢ ( 𝜑  →  ( 0g ‘ ( 𝑅  freeLMod  𝐴 ) )  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 11 | 9 10 | eqtrd | ⊢ ( 𝜑  →  ( 𝐴  ×  {  0  } )  =  ( 0g ‘ 𝐹 ) ) |