Step |
Hyp |
Ref |
Expression |
1 |
|
mnringmulrd.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
2 |
|
mnringmulrd.2 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
mnringmulrd.3 |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
mnringmulrd.4 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mnringmulrd.5 |
⊢ 𝐴 = ( Base ‘ 𝑀 ) |
6 |
|
mnringmulrd.6 |
⊢ + = ( +g ‘ 𝑀 ) |
7 |
|
mnringmulrd.7 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
8 |
|
mnringmulrd.8 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
9 |
|
eqid |
⊢ ( 𝑅 freeLMod 𝐴 ) = ( 𝑅 freeLMod 𝐴 ) |
10 |
1 2 5 9 7 8
|
mnringbaserd |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ) |
11 |
5
|
fvexi |
⊢ 𝐴 ∈ V |
12 |
11 11
|
mpoex |
⊢ ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ∈ V ) |
14 |
1
|
ovexi |
⊢ 𝐹 ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
16 |
|
ovex |
⊢ ( 𝑅 freeLMod 𝐴 ) ∈ V |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( 𝑅 freeLMod 𝐴 ) ∈ V ) |
18 |
2 10
|
eqtr3id |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ) |
19 |
1 5 9 7 8
|
mnringaddgd |
⊢ ( 𝜑 → ( +g ‘ ( 𝑅 freeLMod 𝐴 ) ) = ( +g ‘ 𝐹 ) ) |
20 |
19
|
eqcomd |
⊢ ( 𝜑 → ( +g ‘ 𝐹 ) = ( +g ‘ ( 𝑅 freeLMod 𝐴 ) ) ) |
21 |
13 15 17 18 20
|
gsumpropd |
⊢ ( 𝜑 → ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) = ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) |
22 |
10 10 21
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) , 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↦ ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) ) |
23 |
|
fvex |
⊢ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ∈ V |
24 |
23 23
|
mpoex |
⊢ ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) , 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↦ ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) ∈ V |
25 |
|
mulrid |
⊢ .r = Slot ( .r ‘ ndx ) |
26 |
25
|
setsid |
⊢ ( ( ( 𝑅 freeLMod 𝐴 ) ∈ V ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) , 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↦ ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) ∈ V ) → ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) , 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↦ ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) = ( .r ‘ ( ( 𝑅 freeLMod 𝐴 ) sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) , 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↦ ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ) ) |
27 |
16 24 26
|
mp2an |
⊢ ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) , 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↦ ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) = ( .r ‘ ( ( 𝑅 freeLMod 𝐴 ) sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) , 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↦ ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ) |
28 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) |
29 |
1 3 4 5 6 9 28 7 8
|
mnringvald |
⊢ ( 𝜑 → 𝐹 = ( ( 𝑅 freeLMod 𝐴 ) sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) , 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↦ ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ 𝐹 ) = ( .r ‘ ( ( 𝑅 freeLMod 𝐴 ) sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) , 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↦ ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) 〉 ) ) ) |
31 |
27 30
|
eqtr4id |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) , 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↦ ( ( 𝑅 freeLMod 𝐴 ) Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) = ( .r ‘ 𝐹 ) ) |
32 |
22 31
|
eqtrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) · ( 𝑦 ‘ 𝑏 ) ) , 0 ) ) ) ) ) = ( .r ‘ 𝐹 ) ) |