Step |
Hyp |
Ref |
Expression |
1 |
|
mnringscad.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
2 |
|
mnringscad.2 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
3 |
|
mnringscad.3 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
4 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
5 |
|
eqid |
⊢ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) = ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) |
6 |
5
|
frlmsca |
⊢ ( ( 𝑅 ∈ 𝑈 ∧ ( Base ‘ 𝑀 ) ∈ V ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) |
7 |
2 4 6
|
sylancl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) |
8 |
|
scaid |
⊢ Scalar = Slot ( Scalar ‘ ndx ) |
9 |
|
scandxnmulrndx |
⊢ ( Scalar ‘ ndx ) ≠ ( .r ‘ ndx ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
11 |
1 8 9 10 5 2 3
|
mnringnmulrd |
⊢ ( 𝜑 → ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( Scalar ‘ 𝐹 ) ) |
12 |
7 11
|
eqtrd |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝐹 ) ) |