Metamath Proof Explorer


Theorem mnringscad

Description: The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringscad.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringscad.2 ( 𝜑𝑅𝑈 )
mnringscad.3 ( 𝜑𝑀𝑊 )
Assertion mnringscad ( 𝜑𝑅 = ( Scalar ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 mnringscad.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnringscad.2 ( 𝜑𝑅𝑈 )
3 mnringscad.3 ( 𝜑𝑀𝑊 )
4 fvex ( Base ‘ 𝑀 ) ∈ V
5 eqid ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) = ( 𝑅 freeLMod ( Base ‘ 𝑀 ) )
6 5 frlmsca ( ( 𝑅𝑈 ∧ ( Base ‘ 𝑀 ) ∈ V ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) )
7 2 4 6 sylancl ( 𝜑𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) )
8 scaid Scalar = Slot ( Scalar ‘ ndx )
9 scandxnmulrndx ( Scalar ‘ ndx ) ≠ ( .r ‘ ndx )
10 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
11 1 8 9 10 5 2 3 mnringnmulrd ( 𝜑 → ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( Scalar ‘ 𝐹 ) )
12 7 11 eqtrd ( 𝜑𝑅 = ( Scalar ‘ 𝐹 ) )