| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringscad.1 | ⊢ 𝐹  =  ( 𝑅  MndRing  𝑀 ) | 
						
							| 2 |  | mnringscad.2 | ⊢ ( 𝜑  →  𝑅  ∈  𝑈 ) | 
						
							| 3 |  | mnringscad.3 | ⊢ ( 𝜑  →  𝑀  ∈  𝑊 ) | 
						
							| 4 |  | fvex | ⊢ ( Base ‘ 𝑀 )  ∈  V | 
						
							| 5 |  | eqid | ⊢ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) )  =  ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) | 
						
							| 6 | 5 | frlmsca | ⊢ ( ( 𝑅  ∈  𝑈  ∧  ( Base ‘ 𝑀 )  ∈  V )  →  𝑅  =  ( Scalar ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) ) ) | 
						
							| 7 | 2 4 6 | sylancl | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) ) ) | 
						
							| 8 |  | scaid | ⊢ Scalar  =  Slot  ( Scalar ‘ ndx ) | 
						
							| 9 |  | scandxnmulrndx | ⊢ ( Scalar ‘ ndx )  ≠  ( .r ‘ ndx ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 11 | 1 8 9 10 5 2 3 | mnringnmulrd | ⊢ ( 𝜑  →  ( Scalar ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) )  =  ( Scalar ‘ 𝐹 ) ) | 
						
							| 12 | 7 11 | eqtrd | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝐹 ) ) |