| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnringscad.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
| 2 |
|
mnringscad.2 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
| 3 |
|
mnringscad.3 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
| 4 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
| 5 |
|
eqid |
⊢ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) = ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) |
| 6 |
5
|
frlmsca |
⊢ ( ( 𝑅 ∈ 𝑈 ∧ ( Base ‘ 𝑀 ) ∈ V ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) |
| 7 |
2 4 6
|
sylancl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) |
| 8 |
|
df-sca |
⊢ Scalar = Slot 5 |
| 9 |
|
5nn |
⊢ 5 ∈ ℕ |
| 10 |
|
3re |
⊢ 3 ∈ ℝ |
| 11 |
|
3lt5 |
⊢ 3 < 5 |
| 12 |
10 11
|
gtneii |
⊢ 5 ≠ 3 |
| 13 |
|
mulrndx |
⊢ ( .r ‘ ndx ) = 3 |
| 14 |
12 13
|
neeqtrri |
⊢ 5 ≠ ( .r ‘ ndx ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 16 |
1 8 9 14 15 5 2 3
|
mnringnmulrdOLD |
⊢ ( 𝜑 → ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( Scalar ‘ 𝐹 ) ) |
| 17 |
7 16
|
eqtrd |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝐹 ) ) |