Metamath Proof Explorer


Theorem mnringvscad

Description: The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringvscad.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringvscad.2 𝐵 = ( Base ‘ 𝑀 )
mnringvscad.3 𝑉 = ( 𝑅 freeLMod 𝐵 )
mnringvscad.4 ( 𝜑𝑅𝑈 )
mnringvscad.5 ( 𝜑𝑀𝑊 )
Assertion mnringvscad ( 𝜑 → ( ·𝑠𝑉 ) = ( ·𝑠𝐹 ) )

Proof

Step Hyp Ref Expression
1 mnringvscad.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnringvscad.2 𝐵 = ( Base ‘ 𝑀 )
3 mnringvscad.3 𝑉 = ( 𝑅 freeLMod 𝐵 )
4 mnringvscad.4 ( 𝜑𝑅𝑈 )
5 mnringvscad.5 ( 𝜑𝑀𝑊 )
6 vscaid ·𝑠 = Slot ( ·𝑠 ‘ ndx )
7 vscandxnmulrndx ( ·𝑠 ‘ ndx ) ≠ ( .r ‘ ndx )
8 1 6 7 2 3 4 5 mnringnmulrd ( 𝜑 → ( ·𝑠𝑉 ) = ( ·𝑠𝐹 ) )