Metamath Proof Explorer
		
		
		
		Description:  The scalar product of a monoid ring.  (Contributed by Rohan Ridenour, 14-May-2024)  (Proof shortened by AV, 1-Nov-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mnringvscad.1 | ⊢ 𝐹  =  ( 𝑅  MndRing  𝑀 ) | 
					
						|  |  | mnringvscad.2 | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
					
						|  |  | mnringvscad.3 | ⊢ 𝑉  =  ( 𝑅  freeLMod  𝐵 ) | 
					
						|  |  | mnringvscad.4 | ⊢ ( 𝜑  →  𝑅  ∈  𝑈 ) | 
					
						|  |  | mnringvscad.5 | ⊢ ( 𝜑  →  𝑀  ∈  𝑊 ) | 
				
					|  | Assertion | mnringvscad | ⊢  ( 𝜑  →  (  ·𝑠  ‘ 𝑉 )  =  (  ·𝑠  ‘ 𝐹 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringvscad.1 | ⊢ 𝐹  =  ( 𝑅  MndRing  𝑀 ) | 
						
							| 2 |  | mnringvscad.2 | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 3 |  | mnringvscad.3 | ⊢ 𝑉  =  ( 𝑅  freeLMod  𝐵 ) | 
						
							| 4 |  | mnringvscad.4 | ⊢ ( 𝜑  →  𝑅  ∈  𝑈 ) | 
						
							| 5 |  | mnringvscad.5 | ⊢ ( 𝜑  →  𝑀  ∈  𝑊 ) | 
						
							| 6 |  | vscaid | ⊢  ·𝑠   =  Slot  (  ·𝑠  ‘ ndx ) | 
						
							| 7 |  | vscandxnmulrndx | ⊢ (  ·𝑠  ‘ ndx )  ≠  ( .r ‘ ndx ) | 
						
							| 8 | 1 6 7 2 3 4 5 | mnringnmulrd | ⊢ ( 𝜑  →  (  ·𝑠  ‘ 𝑉 )  =  (  ·𝑠  ‘ 𝐹 ) ) |