Metamath Proof Explorer


Theorem mnringvscad

Description: The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringvscad.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringvscad.2 B = Base M
mnringvscad.3 V = R freeLMod B
mnringvscad.4 φ R U
mnringvscad.5 φ M W
Assertion mnringvscad φ V = F

Proof

Step Hyp Ref Expression
1 mnringvscad.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringvscad.2 B = Base M
3 mnringvscad.3 V = R freeLMod B
4 mnringvscad.4 φ R U
5 mnringvscad.5 φ M W
6 vscaid 𝑠 = Slot ndx
7 vscandxnmulrndx ndx ndx
8 1 6 7 2 3 4 5 mnringnmulrd φ V = F