Metamath Proof Explorer
Description: The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)
|
|
Ref |
Expression |
|
Hypotheses |
mnringvscad.1 |
|
|
|
mnringvscad.2 |
|
|
|
mnringvscad.3 |
|
|
|
mnringvscad.4 |
|
|
|
mnringvscad.5 |
|
|
Assertion |
mnringvscad |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnringvscad.1 |
|
| 2 |
|
mnringvscad.2 |
|
| 3 |
|
mnringvscad.3 |
|
| 4 |
|
mnringvscad.4 |
|
| 5 |
|
mnringvscad.5 |
|
| 6 |
|
vscaid |
|
| 7 |
|
vscandxnmulrndx |
|
| 8 |
1 6 7 2 3 4 5
|
mnringnmulrd |
|